我有一个名为spam的数据集,其中包含58列和约3500行与垃圾邮件相关的数据。
我计划将来在这个数据集上运行一些线性回归,但我想事先做一些预处理,并将列标准化,使其具有零平均值和单位方差。
有人告诉我,最好的方法是用R,所以我想问,如何用R实现归一化?我已经正确加载了数据,我只是在寻找一些包或方法来执行这个任务。
我有一个名为spam的数据集,其中包含58列和约3500行与垃圾邮件相关的数据。
我计划将来在这个数据集上运行一些线性回归,但我想事先做一些预处理,并将列标准化,使其具有零平均值和单位方差。
有人告诉我,最好的方法是用R,所以我想问,如何用R实现归一化?我已经正确加载了数据,我只是在寻找一些包或方法来执行这个任务。
当前回答
缩放可以用于完整的数据帧和特定的列。 对于特定的列,可以使用以下代码:
trainingSet[, 3:7] = scale(trainingSet[, 3:7]) # For column 3 to 7
trainingSet[, 8] = scale(trainingSet[, 8]) # For column 8
全数据帧
trainingSet <- scale(trainingSet)
其他回答
我假设你想要的是均值为0,标准差为1。如果你的数据在一个数据框架中,所有的列都是数值的,你可以简单地调用数据上的缩放函数来做你想做的事情。
dat <- data.frame(x = rnorm(10, 30, .2), y = runif(10, 3, 5))
scaled.dat <- scale(dat)
# check that we get mean of 0 and sd of 1
colMeans(scaled.dat) # faster version of apply(scaled.dat, 2, mean)
apply(scaled.dat, 2, sd)
使用内置函数是有品位的。比如这只猫:
折叠包提供了最快的缩放函数-在c++中使用Welfords在线算法实现:
dat <- data.frame(x = rnorm(1e6, 30, .2),
y = runif(1e6, 3, 5),
z = runif(1e6, 10, 20))
library(collapse)
library(microbenchmark)
microbenchmark(fscale(dat), scale(dat))
Unit: milliseconds
expr min lq mean median uq max neval cld
fscale(dat) 27.86456 29.5864 38.96896 30.80421 43.79045 313.5729 100 a
scale(dat) 357.07130 391.0914 489.93546 416.33626 625.38561 793.2243 100 b
此外:fscale是S3通用的向量、矩阵和数据帧,还支持分组和/或加权缩放操作,以及缩放到任意均值和标准偏差。
'插入'包提供了预处理数据的方法(例如居中和缩放)。你也可以使用下面的代码:
library(caret)
# Assuming goal class is column 10
preObj <- preProcess(data[, -10], method=c("center", "scale"))
newData <- predict(preObj, data[, -10])
详情:http://www.inside-r.org/node/86978
dplyr包有两个函数可以做到这一点。
> require(dplyr)
要更改数据表的特定列,可以使用mutate_at()函数。要更改所有列,可以使用mutate_all。
下面是使用这些函数来标准化数据的简单示例。
改变特定的列:
dt = data.table(a = runif(3500), b = runif(3500), c = runif(3500))
dt = data.table(dt %>% mutate_at(vars("a", "c"), scale)) # can also index columns by number, e.g., vars(c(1,3))
> apply(dt, 2, mean)
a b c
1.783137e-16 5.064855e-01 -5.245395e-17
> apply(dt, 2, sd)
a b c
1.0000000 0.2906622 1.0000000
改变所有列:
dt = data.table(a = runif(3500), b = runif(3500), c = runif(3500))
dt = data.table(dt %>% mutate_all(scale))
> apply(dt, 2, mean)
a b c
-1.728266e-16 9.291994e-17 1.683551e-16
> apply(dt, 2, sd)
a b c
1 1 1
缩放可以用于完整的数据帧和特定的列。 对于特定的列,可以使用以下代码:
trainingSet[, 3:7] = scale(trainingSet[, 3:7]) # For column 3 to 7
trainingSet[, 8] = scale(trainingSet[, 8]) # For column 8
全数据帧
trainingSet <- scale(trainingSet)