在给定的图像中,表现和解决迷宫的最佳方法是什么?
Given an JPEG image (as seen above), what's the best way to read it in, parse it into some data structure and solve the maze? My first instinct is to read the image in pixel by pixel and store it in a list (array) of boolean values: True for a white pixel, and False for a non-white pixel (the colours can be discarded). The issue with this method, is that the image may not be "pixel perfect". By that I simply mean that if there is a white pixel somewhere on a wall it may create an unintended path.
另一种方法(经过思考后我想到的)是将图像转换为SVG文件——这是在画布上绘制的路径列表。这样,路径可以读入相同类型的列表(布尔值),其中True表示路径或墙壁,False表示可移动空间。如果转换不是100%准确,并且没有完全连接所有的墙壁,就会出现一个问题。
转换为SVG的另一个问题是,这些线不是“完全”直的。这导致路径是三次贝塞尔曲线。对于一个由整数索引的布尔值列表(数组),曲线将不容易转移,并且曲线上的所有点都必须计算,但不会与列表索引完全匹配。
我认为,虽然这些方法中的一种可能有效(虽然可能不是),但对于如此大的图像,它们的效率非常低,并且存在更好的方法。如何才能做到最好(最有效和/或最简单)?有没有最好的办法?
然后是迷宫的解决。如果我用前两种方法中的任何一种,我最终都会得到一个矩阵。根据这个答案,表示迷宫的好方法是使用树,解决迷宫的好方法是使用a *算法。如何从图像中创建树?什么好主意吗?
博士TL; 最好的解析方法?转换成什么样的数据结构?结构如何帮助/阻碍解决问题?
更新 正如@Thomas推荐的那样,我已经尝试用numpy实现@Mikhail在Python中编写的内容。我觉得这个算法是正确的,但它不像我希望的那样工作。下面(代码)。PNG库为PyPNG。
import png, numpy, Queue, operator, itertools
def is_white(coord, image):
""" Returns whether (x, y) is approx. a white pixel."""
a = True
for i in xrange(3):
if not a: break
a = image[coord[1]][coord[0] * 3 + i] > 240
return a
def bfs(s, e, i, visited):
""" Perform a breadth-first search. """
frontier = Queue.Queue()
while s != e:
for d in [(-1, 0), (0, -1), (1, 0), (0, 1)]:
np = tuple(map(operator.add, s, d))
if is_white(np, i) and np not in visited:
frontier.put(np)
visited.append(s)
s = frontier.get()
return visited
def main():
r = png.Reader(filename = "thescope-134.png")
rows, cols, pixels, meta = r.asDirect()
assert meta['planes'] == 3 # ensure the file is RGB
image2d = numpy.vstack(itertools.imap(numpy.uint8, pixels))
start, end = (402, 985), (398, 27)
print bfs(start, end, image2d, [])