周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

多边形网格的半边数据结构和翼边。

适用于计算几何算法。

其他回答

根据Bloom Filter提到的,可删除Bloom Filter(DlBF)在某些方面优于基本计数变体。看见http://arxiv.org/abs/1005.0352

Scapegoat树。普通二叉树的一个典型问题是它们变得不平衡(例如,当按升序插入键时)

平衡二叉树(AKA AVL树)在每次插入后都会浪费大量时间进行平衡。

红黑树保持平衡,但每个节点都需要额外的存储空间。

Scapegoat树像红黑树一样保持平衡,但不需要任何额外的存储。他们通过在每次插入后分析树并进行微小调整来实现这一点。看见http://en.wikipedia.org/wiki/Scapegoat_tree.

多边形网格的半边数据结构和翼边。

适用于计算几何算法。

Splash桌很棒。它们就像一个普通的哈希表,只是它们保证了恒定的时间查找,并且可以处理90%的利用率而不损失性能。它们是布谷鸟哈希(也是一种很棒的数据结构)的推广。它们看起来确实有专利,但和大多数纯软件专利一样,我不会太担心。

角落缝合的数据结构。根据总结:

拐角缝合是一种用于表示矩形二维对象。看起来特别适合VLSI交互式编辑系统布局。数据结构有两个重要特征:第一,空白明确表示;第二,矩形区域被缝合在他们的角落像一个拼缝被子。此组织快速算法的结果(线性时间或更好),创建、删除、拉伸和压实。算法如下以简化模型VLSI电路和存储器结构要求如下讨论。测量结果表明拐角缝合要求大约三倍尽可能简单的存储空间代表。