周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

二进制决策图(我最喜欢的数据结构,擅长表示布尔方程并解决它们。适用于很多事情)堆(一个树,其中节点的父节点总是与节点的子节点保持某种关系,例如,节点的父级总是大于它的每个子节点(最大堆))优先级队列(实际上只有最小堆和最大堆,有助于维护大量元素的顺序,例如,应该首先删除具有最高值的项目)哈希表(具有各种查找策略和桶溢出处理)平衡的二进制搜索树(每种都有自己的优点)RB树(当以有序方式插入、查找、删除和迭代时,总体良好)Avl树(查找速度比RB快,但其他方面与RB非常相似)Splay树(当最近使用的节点可能被重用时,查找速度更快)融合树(利用快速乘法获得更好的查找时间)B+树(用于数据库和文件系统中的索引,当从索引读取/写入索引的延迟很长时非常有效)。空间索引(非常适合查询点/圆/矩形/线/立方体是否彼此接近或包含在其中)BSP树四叉树八叉树范围树许多相似但略有不同的树木,不同的尺寸区间树(很好地找到重叠区间,线性)图邻接列表(基本上是边的列表)邻接矩阵(表示图的有向边的表,每边一个位。对于图遍历非常快速)

这些是我能想到的。维基百科上还有更多关于数据结构的内容

其他回答

当我读到一些与RMQ和LCA相关的算法时,我偶然发现了另一种数据结构笛卡尔树。在笛卡尔树中,两个节点之间的最低共同祖先是它们之间的最小节点。将RMQ问题转换为LCA非常有用。

向左倾斜的红黑树。罗伯特·塞奇威克(Robert Sedgewick)于2008年发表的红黑树的一个显著简化的实现(大约是要实现的代码行的一半)。如果您在红黑树的实现方面遇到过困难,请阅读此变体。

与安德森树非常相似(如果不是完全相同)。

空间索引,特别是R-树和KD树,有效地存储空间数据。它们适用于地理地图坐标数据和VLSI位置和路线算法,有时也适用于最近邻搜索。

位阵列紧凑地存储单个位,并允许快速位操作。

我不确定这个数据结构是否有名字,但是提议的包含在Boost中的tokenmap数据结构有点有趣。这是一个动态调整大小的映射,其中查找不仅是O(1),而且是简单的数组访问。我写了关于这个数据结构的大部分背景材料,其中描述了它如何工作的基本原理。

操作系统使用类似于tokenmap的东西来将文件或资源句柄映射到表示文件或资源的数据结构。

有一种巧妙的数据结构,它使用数组来保存元素的数据,但数组在链接列表/数组中链接在一起。

这确实具有这样的优点,即对元素的迭代非常快(比纯链接列表方法更快),并且在内存和/或(去)分配中移动带有元素的数组的成本最低。(正因为如此,此数据结构对于模拟工作非常有用)。

我从这里知道:

http://software.intel.com/en-us/blogs/2010/03/26/linked-list-verses-array/

“……并且一个额外的数组被分配并链接到粒子数组的单元格列表中。这在某些方面类似于TBB实现其并发容器的方式。”(这是关于链接列表与数组的性能)