周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

球树。只是因为它们让人傻笑。

球树是索引度量空间中的点的数据结构。这是一篇关于构建它们的文章。它们通常用于查找点的最近邻居或加速k均值。

其他回答

Kd-Trees是实时光线跟踪中使用的空间数据结构,它的缺点是需要裁剪与不同空间交叉的三角形。一般来说,BVH更快,因为它们更轻。MX-CIF四叉树,通过将规则四叉树与四叉树边缘的二叉树组合,存储边界框而不是任意点集。HAMT,由于所涉及的常数,访问时间通常超过O(1)个哈希图的分层哈希图。反向索引,在搜索引擎界非常有名,因为它用于快速检索与不同搜索词相关的文档。

大多数(如果不是全部)记录在NIST算法和数据结构词典中

Arne Andersson树是红黑树的一种更简单的替代方案,其中只有正确的链接可以是红色的。这大大简化了维护,同时保持了与红黑树相同的性能。原论文给出了一个很好的简短的插入和删除实现。

我很惊讶没有人提到Merkle树(即哈希树)。

在许多情况下(P2P程序、数字签名),当您只有部分文件可用时,您需要验证整个文件的哈希。

我认为标准数据结构的无锁替代方案,即无锁队列、堆栈和列表被忽略了。随着并发性成为更高的优先级,它们变得越来越重要,并且比使用互斥或锁来处理并发读/写更令人钦佩。

以下是一些链接http://www.cl.cam.ac.uk/research/srg/netos/lock-free/http://www.research.ibm.com/people/m/michael/podc-1996.pdf[PDF链接]http://www.boyet.com/Articles/LockfreeStack.html

迈克·阿克顿(Mike Acton)的博客中有一些关于无锁设计和方法的优秀文章

斐波那契堆

它们被用于一些已知的最快算法(渐近)中,用于许多与图相关的问题,例如最短路径问题。Dijkstra的算法在标准二进制堆的O(E log V)时间内运行;使用斐波那契堆将其提高到O(E+V log V),这对于密集图来说是一个巨大的加速。然而,不幸的是,它们有一个很高的恒定因子,往往使它们在实践中不切实际。