周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

球树。只是因为它们让人傻笑。

球树是索引度量空间中的点的数据结构。这是一篇关于构建它们的文章。它们通常用于查找点的最近邻居或加速k均值。

其他回答

成对堆是一种堆数据结构,具有相对简单的实现和出色的实际摊余性能。

我个人认为稀疏矩阵数据结构非常有趣。http://www.netlib.org/linalg/html_templates/node90.html

著名的BLAS库使用这些。当您处理包含100000行和列的线性系统时,使用它们变得至关重要。其中一些还类似于计算机图形中常见的紧凑网格(基本上类似于桶排序网格)。http://www.cs.kuleuven.be/~ares/publications/LD08CFRGRT/LD08CFRGRT.pdf

同样就计算机图形而言,MAC网格有些有趣,但这仅仅是因为它们很聪明。http://www.seas.upenn.edu/~cis665/projects/Liquiation_665_Report.pdf

区域四叉树

(引自维基百科)

区域四叉树通过将区域分解为四个相等的象限、子象限等来表示二维空间的分区,每个叶节点包含对应于特定子区域的数据。树中的每个节点要么正好有四个子节点,要么没有子节点(叶节点)。

像这样的四叉树很适合存储空间数据,例如纬度和经度或其他类型的坐标。

这是我在大学里最喜欢的数据结构。对这家伙进行编码并看到它的工作非常酷。如果你正在寻找一个需要思考并且有点偏离常规的项目,我强烈建议你这样做。无论如何,它比通常在数据结构类中分配的标准BST派生工具有趣得多!

事实上,作为奖励,我在这里找到了(弗吉尼亚理工大学的)课堂项目前的演讲笔记(pdf警告)。

我认为保罗·费拉吉纳和乔凡尼·曼奇尼的FM指数真的很酷。尤其是在生物信息学方面。它本质上是一个压缩的全文索引,利用了后缀数组和参考文本的burrows-wheeler变换的组合。可以在不解压缩整个索引的情况下搜索索引。

Arne Andersson树是红黑树的一种更简单的替代方案,其中只有正确的链接可以是红色的。这大大简化了维护,同时保持了与红黑树相同的性能。原论文给出了一个很好的简短的插入和删除实现。