谁能给我解释一下map和flatMap之间的区别,以及它们各自的良好用例是什么?

“flatten the results”是什么意思? 它有什么好处?


当前回答

map:它通过对RDD的每个元素应用函数来返回一个新的RDD。.map中的函数只能返回一个项。

flatMap:与map类似,它通过对RDD的每个元素应用函数来返回一个新的RDD,但输出是扁平的。

同样,flatMap中的函数可以返回一个元素列表(0或更多)

例如:

sc.parallelize([3,4,5]).map(lambda x: range(1,x)).collect()

输出:[[1,2],[1,2,3],[1,2,3,4]]

sc.parallelize([3,4,5]).flatMap(lambda x: range(1,x)).collect()

输出:注意o/p在单个列表[1,2,1,2,3, 1,2,3,4]

来源:https://www.linkedin.com/pulse/difference-between-map-flatmap-transformations-spark-pyspark-pandey/

其他回答

区别可以从下面的pyspark代码示例中看到:

rdd = sc.parallelize([2, 3, 4])
rdd.flatMap(lambda x: range(1, x)).collect()
Output:
[1, 1, 2, 1, 2, 3]


rdd.map(lambda x: range(1, x)).collect()
Output:
[[1], [1, 2], [1, 2, 3]]

Flatmap和Map都转换集合。

的区别:

地图(函数) 返回一个新的分布式数据集,该数据集通过函数func传递源的每个元素。

flatMap(函数) 类似于map,但是每个输入项可以映射到0个或多个输出项(因此func应该返回Seq而不是单个项)。

变换函数为: map:输入一个元素->输出一个元素。 flatMap:输入一个元素->输出0个或更多元素(一个集合)。

使用测试。以Md为例:

➜  spark-1.6.1 cat test.md
This is the first line;
This is the second line;
This is the last line.

scala> val textFile = sc.textFile("test.md")
scala> textFile.map(line => line.split(" ")).count()
res2: Long = 3

scala> textFile.flatMap(line => line.split(" ")).count()
res3: Long = 15

scala> textFile.map(line => line.split(" ")).collect()
res0: Array[Array[String]] = Array(Array(This, is, the, first, line;), Array(This, is, the, second, line;), Array(This, is, the, last, line.))

scala> textFile.flatMap(line => line.split(" ")).collect()
res1: Array[String] = Array(This, is, the, first, line;, This, is, the, second, line;, This, is, the, last, line.)

如果您使用映射方法,您将得到测试线。md,对于flatMap方法,您将得到字数。

map方法类似于flatMap,它们都返回一个新的RDD。map方法经常使用返回一个新的RDD, flatMap方法经常使用分割词。

对于所有想要PySpark相关的人:

示例转换:flatMap

>>> a="hello what are you doing"
>>> a.split()

['hello', 'what', 'are', 'you', 'doing']

>>> b=["hello what are you doing","this is rak"]
>>> b.split()

回溯(最近一次调用): 文件“”,第1行,在 AttributeError: 'list'对象没有属性'split'

>>> rline=sc.parallelize(b)
>>> type(rline)

>>> def fwords(x):
...     return x.split()


>>> rword=rline.map(fwords)
>>> rword.collect()

[[‘你好’,‘什么’,‘是’,‘你’,‘做’],[‘这个’,‘是’,'爱你']]

>>> rwordflat=rline.flatMap(fwords)
>>> rwordflat.collect()

[‘你好’,‘什么’,‘是’,‘你’,‘做’,‘这’,‘是’,‘爱’)

希望能有所帮助。

地图:

是一种高阶方法,它接受一个函数作为输入,并将其应用于源RDD中的每个元素。

http://commandstech.com/difference-between-map-and-flatmap-in-spark-what-is-map-and-flatmap-with-examples/

flatMap:

接受输入函数的高阶方法和转换操作。