谁能给我解释一下map和flatMap之间的区别,以及它们各自的良好用例是什么?

“flatten the results”是什么意思? 它有什么好处?


当前回答

map返回相同数量元素的RDD,而flatMap可能不会。

flatMap过滤丢失或不正确数据的示例用例。

map在各种各样的情况下使用,其中输入和输出的元素数量是相同的。

number.csv

1
2
3
-
4
-
5

Map.py添加add.csv中的所有数字。

from operator import *

def f(row):
  try:
    return float(row)
  except Exception:
    return 0

rdd = sc.textFile('a.csv').map(f)

print(rdd.count())      # 7
print(rdd.reduce(add))  # 15.0

py使用flatMap在添加之前过滤掉缺失的数据。与以前的版本相比,增加的数字更少。

from operator import *

def f(row):
  try:
    return [float(row)]
  except Exception:
    return []

rdd = sc.textFile('a.csv').flatMap(f)

print(rdd.count())      # 5
print(rdd.reduce(add))  # 15.0

其他回答

map和flatMap是相似的,从某种意义上说,它们从输入RDD中获取一行并在其上应用一个函数。它们的不同之处在于map中的函数只返回一个元素,而flatMap中的函数可以返回一个元素列表(0或更多)作为迭代器。

同样,flatMap的输出是扁平的。尽管flatMap中的函数返回一个元素列表,但flatMap返回一个RDD,其中以平面方式(而不是列表)包含列表中的所有元素。

Flatmap和Map都转换集合。

的区别:

地图(函数) 返回一个新的分布式数据集,该数据集通过函数func传递源的每个元素。

flatMap(函数) 类似于map,但是每个输入项可以映射到0个或多个输出项(因此func应该返回Seq而不是单个项)。

变换函数为: map:输入一个元素->输出一个元素。 flatMap:输入一个元素->输出0个或更多元素(一个集合)。

这可以归结为你最初的问题:你所说的扁平化是什么意思?

当您使用flatMap时,“多维”集合就变成了“一维”集合。

val array1d = Array ("1,2,3", "4,5,6", "7,8,9")  
//array1d is an array of strings

val array2d = array1d.map(x => x.split(","))
//array2d will be : Array( Array(1,2,3), Array(4,5,6), Array(7,8,9) )

val flatArray = array1d.flatMap(x => x.split(","))
//flatArray will be : Array (1,2,3,4,5,6,7,8,9)

当你想使用flatMap时,

你的地图功能的结果是创建多层结构 但所有你想要的是一个简单的-平面-一维结构,通过删除所有的内部分组

对于所有想要PySpark相关的人:

示例转换:flatMap

>>> a="hello what are you doing"
>>> a.split()

['hello', 'what', 'are', 'you', 'doing']

>>> b=["hello what are you doing","this is rak"]
>>> b.split()

回溯(最近一次调用): 文件“”,第1行,在 AttributeError: 'list'对象没有属性'split'

>>> rline=sc.parallelize(b)
>>> type(rline)

>>> def fwords(x):
...     return x.split()


>>> rword=rline.map(fwords)
>>> rword.collect()

[[‘你好’,‘什么’,‘是’,‘你’,‘做’],[‘这个’,‘是’,'爱你']]

>>> rwordflat=rline.flatMap(fwords)
>>> rwordflat.collect()

[‘你好’,‘什么’,‘是’,‘你’,‘做’,‘这’,‘是’,‘爱’)

希望能有所帮助。

map

通过将函数应用到该RDD的每个元素,返回一个新的RDD。

>>> rdd = sc.parallelize([2, 3, 4])
>>> sorted(rdd.map(lambda x: [(x, x), (x, x)]).collect())
[[(2, 2), (2, 2)], [(3, 3), (3, 3)], [(4, 4), (4, 4)]]

flatMap

返回一个新的RDD,首先对该RDD的所有元素应用一个函数,然后将结果平摊。 在这里,一个元素转化为多个元素是可能的

>>> rdd = sc.parallelize([2, 3, 4])
>>> sorted(rdd.flatMap(lambda x: [(x, x), (x, x)]).collect())
[(2, 2), (2, 2), (3, 3), (3, 3), (4, 4), (4, 4)]