谁能给我解释一下map和flatMap之间的区别,以及它们各自的良好用例是什么?

“flatten the results”是什么意思? 它有什么好处?


当前回答

区别可以从下面的pyspark代码示例中看到:

rdd = sc.parallelize([2, 3, 4])
rdd.flatMap(lambda x: range(1, x)).collect()
Output:
[1, 1, 2, 1, 2, 3]


rdd.map(lambda x: range(1, x)).collect()
Output:
[[1], [1, 2], [1, 2, 3]]

其他回答

如果您正在询问RDD之间的区别。map和RDD。在Spark中,map将一个大小为N的RDD转换为另一个大小为N的RDD。如。

myRDD.map(x => x*2)

例如,如果myRDD由double组成。

而flatMap可以将RDD转换为另一个不同大小的RDD: 如:

myRDD.flatMap(x =>new Seq(2*x,3*x))

这将返回一个大小为2*N的RDD 或

myRDD.flatMap(x =>if x<10 new Seq(2*x,3*x) else new Seq(x) )

map

通过将函数应用到该RDD的每个元素,返回一个新的RDD。

>>> rdd = sc.parallelize([2, 3, 4])
>>> sorted(rdd.map(lambda x: [(x, x), (x, x)]).collect())
[[(2, 2), (2, 2)], [(3, 3), (3, 3)], [(4, 4), (4, 4)]]

flatMap

返回一个新的RDD,首先对该RDD的所有元素应用一个函数,然后将结果平摊。 在这里,一个元素转化为多个元素是可能的

>>> rdd = sc.parallelize([2, 3, 4])
>>> sorted(rdd.flatMap(lambda x: [(x, x), (x, x)]).collect())
[(2, 2), (2, 2), (3, 3), (3, 3), (4, 4), (4, 4)]

地图:

是一种高阶方法,它接受一个函数作为输入,并将其应用于源RDD中的每个元素。

http://commandstech.com/difference-between-map-and-flatmap-in-spark-what-is-map-and-flatmap-with-examples/

flatMap:

接受输入函数的高阶方法和转换操作。

map:它通过对RDD的每个元素应用函数来返回一个新的RDD。.map中的函数只能返回一个项。

flatMap:与map类似,它通过对RDD的每个元素应用函数来返回一个新的RDD,但输出是扁平的。

同样,flatMap中的函数可以返回一个元素列表(0或更多)

例如:

sc.parallelize([3,4,5]).map(lambda x: range(1,x)).collect()

输出:[[1,2],[1,2,3],[1,2,3,4]]

sc.parallelize([3,4,5]).flatMap(lambda x: range(1,x)).collect()

输出:注意o/p在单个列表[1,2,1,2,3, 1,2,3,4]

来源:https://www.linkedin.com/pulse/difference-between-map-flatmap-transformations-spark-pyspark-pandey/

map和flatMap是相似的,从某种意义上说,它们从输入RDD中获取一行并在其上应用一个函数。它们的不同之处在于map中的函数只返回一个元素,而flatMap中的函数可以返回一个元素列表(0或更多)作为迭代器。

同样,flatMap的输出是扁平的。尽管flatMap中的函数返回一个元素列表,但flatMap返回一个RDD,其中以平面方式(而不是列表)包含列表中的所有元素。