谁能给我解释一下map和flatMap之间的区别,以及它们各自的良好用例是什么?
“flatten the results”是什么意思? 它有什么好处?
谁能给我解释一下map和flatMap之间的区别,以及它们各自的良好用例是什么?
“flatten the results”是什么意思? 它有什么好处?
当前回答
Flatmap和Map都转换集合。
的区别:
地图(函数) 返回一个新的分布式数据集,该数据集通过函数func传递源的每个元素。
flatMap(函数) 类似于map,但是每个输入项可以映射到0个或多个输出项(因此func应该返回Seq而不是单个项)。
变换函数为: map:输入一个元素->输出一个元素。 flatMap:输入一个元素->输出0个或更多元素(一个集合)。
其他回答
map和flatMap输出的差异:
1. flatmap
val a = sc.parallelize(1 to 10, 5)
a.flatMap(1 to _).collect()
输出:
1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
2.地图:
val a = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)
val b = a.map(_.length).collect()
输出:
3 6 6 3 8
通常我们在hadoop中使用字数计算示例。我将使用相同的用例,将使用map和flatMap,我们将看到它如何处理数据的区别。
下面是示例数据文件。
hadoop is fast
hive is sql on hdfs
spark is superfast
spark is awesome
上面的文件将使用map和flatMap进行解析。
使用地图
>>> wc = data.map(lambda line:line.split(" "));
>>> wc.collect()
[u'hadoop is fast', u'hive is sql on hdfs', u'spark is superfast', u'spark is awesome']
输入有4行,输出大小也是4,即N个元素==> N个元素。
使用flatMap
>>> fm = data.flatMap(lambda line:line.split(" "));
>>> fm.collect()
[u'hadoop', u'is', u'fast', u'hive', u'is', u'sql', u'on', u'hdfs', u'spark', u'is', u'superfast', u'spark', u'is', u'awesome']
输出与map不同。
让我们为每个键赋值1以获得单词计数。
fm:使用flatMap创建的RDD wc:使用map创建RDD
>>> fm.map(lambda word : (word,1)).collect()
[(u'hadoop', 1), (u'is', 1), (u'fast', 1), (u'hive', 1), (u'is', 1), (u'sql', 1), (u'on', 1), (u'hdfs', 1), (u'spark', 1), (u'is', 1), (u'superfast', 1), (u'spark', 1), (u'is', 1), (u'awesome', 1)]
然而,RDD wc上的flatMap将给出以下不希望看到的输出:
>>> wc.flatMap(lambda word : (word,1)).collect()
[[u'hadoop', u'is', u'fast'], 1, [u'hive', u'is', u'sql', u'on', u'hdfs'], 1, [u'spark', u'is', u'superfast'], 1, [u'spark', u'is', u'awesome'], 1]
如果使用map而不是flatMap,则无法获得单词计数。
根据定义,map和flatMap的区别是:
map:它通过对每个元素应用给定的函数来返回一个新的RDD RDD。函数在map中只返回一个项。 flatMap:与map类似,它通过应用函数返回一个新的RDD 到RDD的每个元素,但输出是平坦的。
map返回相同数量元素的RDD,而flatMap可能不会。
flatMap过滤丢失或不正确数据的示例用例。
map在各种各样的情况下使用,其中输入和输出的元素数量是相同的。
number.csv
1
2
3
-
4
-
5
Map.py添加add.csv中的所有数字。
from operator import *
def f(row):
try:
return float(row)
except Exception:
return 0
rdd = sc.textFile('a.csv').map(f)
print(rdd.count()) # 7
print(rdd.reduce(add)) # 15.0
py使用flatMap在添加之前过滤掉缺失的数据。与以前的版本相比,增加的数字更少。
from operator import *
def f(row):
try:
return [float(row)]
except Exception:
return []
rdd = sc.textFile('a.csv').flatMap(f)
print(rdd.count()) # 5
print(rdd.reduce(add)) # 15.0
对于所有想要PySpark相关的人:
示例转换:flatMap
>>> a="hello what are you doing"
>>> a.split()
['hello', 'what', 'are', 'you', 'doing']
>>> b=["hello what are you doing","this is rak"]
>>> b.split()
回溯(最近一次调用): 文件“”,第1行,在 AttributeError: 'list'对象没有属性'split'
>>> rline=sc.parallelize(b)
>>> type(rline)
>>> def fwords(x):
... return x.split()
>>> rword=rline.map(fwords)
>>> rword.collect()
[[‘你好’,‘什么’,‘是’,‘你’,‘做’],[‘这个’,‘是’,'爱你']]
>>> rwordflat=rline.flatMap(fwords)
>>> rwordflat.collect()
[‘你好’,‘什么’,‘是’,‘你’,‘做’,‘这’,‘是’,‘爱’)
希望能有所帮助。
地图:
是一种高阶方法,它接受一个函数作为输入,并将其应用于源RDD中的每个元素。
http://commandstech.com/difference-between-map-and-flatmap-in-spark-what-is-map-and-flatmap-with-examples/
flatMap:
接受输入函数的高阶方法和转换操作。