谁能给我解释一下map和flatMap之间的区别,以及它们各自的良好用例是什么?
“flatten the results”是什么意思? 它有什么好处?
谁能给我解释一下map和flatMap之间的区别,以及它们各自的良好用例是什么?
“flatten the results”是什么意思? 它有什么好处?
当前回答
Flatmap和Map都转换集合。
的区别:
地图(函数) 返回一个新的分布式数据集,该数据集通过函数func传递源的每个元素。
flatMap(函数) 类似于map,但是每个输入项可以映射到0个或多个输出项(因此func应该返回Seq而不是单个项)。
变换函数为: map:输入一个元素->输出一个元素。 flatMap:输入一个元素->输出0个或更多元素(一个集合)。
其他回答
map(func)返回一个新的分布式数据集,该数据集通过func声明的函数传递源的每个元素。map()是单个项
其间
flatMap(func)类似于map,但是每个输入项可以映射到0个或多个输出项,因此func应该返回一个Sequence而不是单个项。
这可以归结为你最初的问题:你所说的扁平化是什么意思?
当您使用flatMap时,“多维”集合就变成了“一维”集合。
val array1d = Array ("1,2,3", "4,5,6", "7,8,9")
//array1d is an array of strings
val array2d = array1d.map(x => x.split(","))
//array2d will be : Array( Array(1,2,3), Array(4,5,6), Array(7,8,9) )
val flatArray = array1d.flatMap(x => x.split(","))
//flatArray will be : Array (1,2,3,4,5,6,7,8,9)
当你想使用flatMap时,
你的地图功能的结果是创建多层结构 但所有你想要的是一个简单的-平面-一维结构,通过删除所有的内部分组
map和flatMap是相似的,从某种意义上说,它们从输入RDD中获取一行并在其上应用一个函数。它们的不同之处在于map中的函数只返回一个元素,而flatMap中的函数可以返回一个元素列表(0或更多)作为迭代器。
同样,flatMap的输出是扁平的。尽管flatMap中的函数返回一个元素列表,但flatMap返回一个RDD,其中以平面方式(而不是列表)包含列表中的所有元素。
Flatmap和Map都转换集合。
的区别:
地图(函数) 返回一个新的分布式数据集,该数据集通过函数func传递源的每个元素。
flatMap(函数) 类似于map,但是每个输入项可以映射到0个或多个输出项(因此func应该返回Seq而不是单个项)。
变换函数为: map:输入一个元素->输出一个元素。 flatMap:输入一个元素->输出0个或更多元素(一个集合)。
通常我们在hadoop中使用字数计算示例。我将使用相同的用例,将使用map和flatMap,我们将看到它如何处理数据的区别。
下面是示例数据文件。
hadoop is fast
hive is sql on hdfs
spark is superfast
spark is awesome
上面的文件将使用map和flatMap进行解析。
使用地图
>>> wc = data.map(lambda line:line.split(" "));
>>> wc.collect()
[u'hadoop is fast', u'hive is sql on hdfs', u'spark is superfast', u'spark is awesome']
输入有4行,输出大小也是4,即N个元素==> N个元素。
使用flatMap
>>> fm = data.flatMap(lambda line:line.split(" "));
>>> fm.collect()
[u'hadoop', u'is', u'fast', u'hive', u'is', u'sql', u'on', u'hdfs', u'spark', u'is', u'superfast', u'spark', u'is', u'awesome']
输出与map不同。
让我们为每个键赋值1以获得单词计数。
fm:使用flatMap创建的RDD wc:使用map创建RDD
>>> fm.map(lambda word : (word,1)).collect()
[(u'hadoop', 1), (u'is', 1), (u'fast', 1), (u'hive', 1), (u'is', 1), (u'sql', 1), (u'on', 1), (u'hdfs', 1), (u'spark', 1), (u'is', 1), (u'superfast', 1), (u'spark', 1), (u'is', 1), (u'awesome', 1)]
然而,RDD wc上的flatMap将给出以下不希望看到的输出:
>>> wc.flatMap(lambda word : (word,1)).collect()
[[u'hadoop', u'is', u'fast'], 1, [u'hive', u'is', u'sql', u'on', u'hdfs'], 1, [u'spark', u'is', u'superfast'], 1, [u'spark', u'is', u'awesome'], 1]
如果使用map而不是flatMap,则无法获得单词计数。
根据定义,map和flatMap的区别是:
map:它通过对每个元素应用给定的函数来返回一个新的RDD RDD。函数在map中只返回一个项。 flatMap:与map类似,它通过应用函数返回一个新的RDD 到RDD的每个元素,但输出是平坦的。