谁能给我解释一下map和flatMap之间的区别,以及它们各自的良好用例是什么?
“flatten the results”是什么意思? 它有什么好处?
谁能给我解释一下map和flatMap之间的区别,以及它们各自的良好用例是什么?
“flatten the results”是什么意思? 它有什么好处?
当前回答
抽样。Map返回单个数组中的所有元素
抽样。flatMap返回数组数组中的元素
让我们假设在text.txt文件中有文本
Spark is an expressive framework
This text is to understand map and faltMap functions of Spark RDD
使用地图
val text=sc.textFile("text.txt").map(_.split(" ")).collect
输出:
text: **Array[Array[String]]** = Array(Array(Spark, is, an, expressive, framework), Array(This, text, is, to, understand, map, and, faltMap, functions, of, Spark, RDD))
使用flatMap
val text=sc.textFile("text.txt").flatMap(_.split(" ")).collect
输出:
text: **Array[String]** = Array(Spark, is, an, expressive, framework, This, text, is, to, understand, map, and, faltMap, functions, of, Spark, RDD)
其他回答
区别可以从下面的pyspark代码示例中看到:
rdd = sc.parallelize([2, 3, 4])
rdd.flatMap(lambda x: range(1, x)).collect()
Output:
[1, 1, 2, 1, 2, 3]
rdd.map(lambda x: range(1, x)).collect()
Output:
[[1], [1, 2], [1, 2, 3]]
map:它通过对RDD的每个元素应用函数来返回一个新的RDD。.map中的函数只能返回一个项。
flatMap:与map类似,它通过对RDD的每个元素应用函数来返回一个新的RDD,但输出是扁平的。
同样,flatMap中的函数可以返回一个元素列表(0或更多)
例如:
sc.parallelize([3,4,5]).map(lambda x: range(1,x)).collect()
输出:[[1,2],[1,2,3],[1,2,3,4]]
sc.parallelize([3,4,5]).flatMap(lambda x: range(1,x)).collect()
输出:注意o/p在单个列表[1,2,1,2,3, 1,2,3,4]
来源:https://www.linkedin.com/pulse/difference-between-map-flatmap-transformations-spark-pyspark-pandey/
map
通过将函数应用到该RDD的每个元素,返回一个新的RDD。
>>> rdd = sc.parallelize([2, 3, 4])
>>> sorted(rdd.map(lambda x: [(x, x), (x, x)]).collect())
[[(2, 2), (2, 2)], [(3, 3), (3, 3)], [(4, 4), (4, 4)]]
flatMap
返回一个新的RDD,首先对该RDD的所有元素应用一个函数,然后将结果平摊。 在这里,一个元素转化为多个元素是可能的
>>> rdd = sc.parallelize([2, 3, 4])
>>> sorted(rdd.flatMap(lambda x: [(x, x), (x, x)]).collect())
[(2, 2), (2, 2), (3, 3), (3, 3), (4, 4), (4, 4)]
对于所有想要PySpark相关的人:
示例转换:flatMap
>>> a="hello what are you doing"
>>> a.split()
['hello', 'what', 'are', 'you', 'doing']
>>> b=["hello what are you doing","this is rak"]
>>> b.split()
回溯(最近一次调用): 文件“”,第1行,在 AttributeError: 'list'对象没有属性'split'
>>> rline=sc.parallelize(b)
>>> type(rline)
>>> def fwords(x):
... return x.split()
>>> rword=rline.map(fwords)
>>> rword.collect()
[[‘你好’,‘什么’,‘是’,‘你’,‘做’],[‘这个’,‘是’,'爱你']]
>>> rwordflat=rline.flatMap(fwords)
>>> rwordflat.collect()
[‘你好’,‘什么’,‘是’,‘你’,‘做’,‘这’,‘是’,‘爱’)
希望能有所帮助。
地图:
是一种高阶方法,它接受一个函数作为输入,并将其应用于源RDD中的每个元素。
http://commandstech.com/difference-between-map-and-flatmap-in-spark-what-is-map-and-flatmap-with-examples/
flatMap:
接受输入函数的高阶方法和转换操作。