谁能给我解释一下map和flatMap之间的区别,以及它们各自的良好用例是什么?

“flatten the results”是什么意思? 它有什么好处?


当前回答

map和flatMap输出的差异:

1. flatmap

val a = sc.parallelize(1 to 10, 5)

a.flatMap(1 to _).collect()

输出:

 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

2.地图:

val a = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)

val b = a.map(_.length).collect()

输出:

3 6 6 3 8

其他回答

抽样。Map返回单个数组中的所有元素

抽样。flatMap返回数组数组中的元素

让我们假设在text.txt文件中有文本

Spark is an expressive framework
This text is to understand map and faltMap functions of Spark RDD

使用地图

val text=sc.textFile("text.txt").map(_.split(" ")).collect

输出:

text: **Array[Array[String]]** = Array(Array(Spark, is, an, expressive, framework), Array(This, text, is, to, understand, map, and, faltMap, functions, of, Spark, RDD))

使用flatMap

val text=sc.textFile("text.txt").flatMap(_.split(" ")).collect

输出:

 text: **Array[String]** = Array(Spark, is, an, expressive, framework, This, text, is, to, understand, map, and, faltMap, functions, of, Spark, RDD)

map和flatMap输出的差异:

1. flatmap

val a = sc.parallelize(1 to 10, 5)

a.flatMap(1 to _).collect()

输出:

 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

2.地图:

val a = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)

val b = a.map(_.length).collect()

输出:

3 6 6 3 8

对于所有想要PySpark相关的人:

示例转换:flatMap

>>> a="hello what are you doing"
>>> a.split()

['hello', 'what', 'are', 'you', 'doing']

>>> b=["hello what are you doing","this is rak"]
>>> b.split()

回溯(最近一次调用): 文件“”,第1行,在 AttributeError: 'list'对象没有属性'split'

>>> rline=sc.parallelize(b)
>>> type(rline)

>>> def fwords(x):
...     return x.split()


>>> rword=rline.map(fwords)
>>> rword.collect()

[[‘你好’,‘什么’,‘是’,‘你’,‘做’],[‘这个’,‘是’,'爱你']]

>>> rwordflat=rline.flatMap(fwords)
>>> rwordflat.collect()

[‘你好’,‘什么’,‘是’,‘你’,‘做’,‘这’,‘是’,‘爱’)

希望能有所帮助。

地图:

是一种高阶方法,它接受一个函数作为输入,并将其应用于源RDD中的每个元素。

http://commandstech.com/difference-between-map-and-flatmap-in-spark-what-is-map-and-flatmap-with-examples/

flatMap:

接受输入函数的高阶方法和转换操作。

map返回相同数量元素的RDD,而flatMap可能不会。

flatMap过滤丢失或不正确数据的示例用例。

map在各种各样的情况下使用,其中输入和输出的元素数量是相同的。

number.csv

1
2
3
-
4
-
5

Map.py添加add.csv中的所有数字。

from operator import *

def f(row):
  try:
    return float(row)
  except Exception:
    return 0

rdd = sc.textFile('a.csv').map(f)

print(rdd.count())      # 7
print(rdd.reduce(add))  # 15.0

py使用flatMap在添加之前过滤掉缺失的数据。与以前的版本相比,增加的数字更少。

from operator import *

def f(row):
  try:
    return [float(row)]
  except Exception:
    return []

rdd = sc.textFile('a.csv').flatMap(f)

print(rdd.count())      # 5
print(rdd.reduce(add))  # 15.0