谁能给我解释一下map和flatMap之间的区别,以及它们各自的良好用例是什么?
“flatten the results”是什么意思? 它有什么好处?
谁能给我解释一下map和flatMap之间的区别,以及它们各自的良好用例是什么?
“flatten the results”是什么意思? 它有什么好处?
当前回答
通常我们在hadoop中使用字数计算示例。我将使用相同的用例,将使用map和flatMap,我们将看到它如何处理数据的区别。
下面是示例数据文件。
hadoop is fast
hive is sql on hdfs
spark is superfast
spark is awesome
上面的文件将使用map和flatMap进行解析。
使用地图
>>> wc = data.map(lambda line:line.split(" "));
>>> wc.collect()
[u'hadoop is fast', u'hive is sql on hdfs', u'spark is superfast', u'spark is awesome']
输入有4行,输出大小也是4,即N个元素==> N个元素。
使用flatMap
>>> fm = data.flatMap(lambda line:line.split(" "));
>>> fm.collect()
[u'hadoop', u'is', u'fast', u'hive', u'is', u'sql', u'on', u'hdfs', u'spark', u'is', u'superfast', u'spark', u'is', u'awesome']
输出与map不同。
让我们为每个键赋值1以获得单词计数。
fm:使用flatMap创建的RDD wc:使用map创建RDD
>>> fm.map(lambda word : (word,1)).collect()
[(u'hadoop', 1), (u'is', 1), (u'fast', 1), (u'hive', 1), (u'is', 1), (u'sql', 1), (u'on', 1), (u'hdfs', 1), (u'spark', 1), (u'is', 1), (u'superfast', 1), (u'spark', 1), (u'is', 1), (u'awesome', 1)]
然而,RDD wc上的flatMap将给出以下不希望看到的输出:
>>> wc.flatMap(lambda word : (word,1)).collect()
[[u'hadoop', u'is', u'fast'], 1, [u'hive', u'is', u'sql', u'on', u'hdfs'], 1, [u'spark', u'is', u'superfast'], 1, [u'spark', u'is', u'awesome'], 1]
如果使用map而不是flatMap,则无法获得单词计数。
根据定义,map和flatMap的区别是:
map:它通过对每个元素应用给定的函数来返回一个新的RDD RDD。函数在map中只返回一个项。 flatMap:与map类似,它通过应用函数返回一个新的RDD 到RDD的每个元素,但输出是平坦的。
其他回答
抽样。Map返回单个数组中的所有元素
抽样。flatMap返回数组数组中的元素
让我们假设在text.txt文件中有文本
Spark is an expressive framework
This text is to understand map and faltMap functions of Spark RDD
使用地图
val text=sc.textFile("text.txt").map(_.split(" ")).collect
输出:
text: **Array[Array[String]]** = Array(Array(Spark, is, an, expressive, framework), Array(This, text, is, to, understand, map, and, faltMap, functions, of, Spark, RDD))
使用flatMap
val text=sc.textFile("text.txt").flatMap(_.split(" ")).collect
输出:
text: **Array[String]** = Array(Spark, is, an, expressive, framework, This, text, is, to, understand, map, and, faltMap, functions, of, Spark, RDD)
这可以归结为你最初的问题:你所说的扁平化是什么意思?
当您使用flatMap时,“多维”集合就变成了“一维”集合。
val array1d = Array ("1,2,3", "4,5,6", "7,8,9")
//array1d is an array of strings
val array2d = array1d.map(x => x.split(","))
//array2d will be : Array( Array(1,2,3), Array(4,5,6), Array(7,8,9) )
val flatArray = array1d.flatMap(x => x.split(","))
//flatArray will be : Array (1,2,3,4,5,6,7,8,9)
当你想使用flatMap时,
你的地图功能的结果是创建多层结构 但所有你想要的是一个简单的-平面-一维结构,通过删除所有的内部分组
Flatmap和Map都转换集合。
的区别:
地图(函数) 返回一个新的分布式数据集,该数据集通过函数func传递源的每个元素。
flatMap(函数) 类似于map,但是每个输入项可以映射到0个或多个输出项(因此func应该返回Seq而不是单个项)。
变换函数为: map:输入一个元素->输出一个元素。 flatMap:输入一个元素->输出0个或更多元素(一个集合)。
map和flatMap输出的差异:
1. flatmap
val a = sc.parallelize(1 to 10, 5)
a.flatMap(1 to _).collect()
输出:
1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
2.地图:
val a = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)
val b = a.map(_.length).collect()
输出:
3 6 6 3 8
通常我们在hadoop中使用字数计算示例。我将使用相同的用例,将使用map和flatMap,我们将看到它如何处理数据的区别。
下面是示例数据文件。
hadoop is fast
hive is sql on hdfs
spark is superfast
spark is awesome
上面的文件将使用map和flatMap进行解析。
使用地图
>>> wc = data.map(lambda line:line.split(" "));
>>> wc.collect()
[u'hadoop is fast', u'hive is sql on hdfs', u'spark is superfast', u'spark is awesome']
输入有4行,输出大小也是4,即N个元素==> N个元素。
使用flatMap
>>> fm = data.flatMap(lambda line:line.split(" "));
>>> fm.collect()
[u'hadoop', u'is', u'fast', u'hive', u'is', u'sql', u'on', u'hdfs', u'spark', u'is', u'superfast', u'spark', u'is', u'awesome']
输出与map不同。
让我们为每个键赋值1以获得单词计数。
fm:使用flatMap创建的RDD wc:使用map创建RDD
>>> fm.map(lambda word : (word,1)).collect()
[(u'hadoop', 1), (u'is', 1), (u'fast', 1), (u'hive', 1), (u'is', 1), (u'sql', 1), (u'on', 1), (u'hdfs', 1), (u'spark', 1), (u'is', 1), (u'superfast', 1), (u'spark', 1), (u'is', 1), (u'awesome', 1)]
然而,RDD wc上的flatMap将给出以下不希望看到的输出:
>>> wc.flatMap(lambda word : (word,1)).collect()
[[u'hadoop', u'is', u'fast'], 1, [u'hive', u'is', u'sql', u'on', u'hdfs'], 1, [u'spark', u'is', u'superfast'], 1, [u'spark', u'is', u'awesome'], 1]
如果使用map而不是flatMap,则无法获得单词计数。
根据定义,map和flatMap的区别是:
map:它通过对每个元素应用给定的函数来返回一个新的RDD RDD。函数在map中只返回一个项。 flatMap:与map类似,它通过应用函数返回一个新的RDD 到RDD的每个元素,但输出是平坦的。