谁能给我解释一下map和flatMap之间的区别,以及它们各自的良好用例是什么?

“flatten the results”是什么意思? 它有什么好处?


当前回答

对于所有想要PySpark相关的人:

示例转换:flatMap

>>> a="hello what are you doing"
>>> a.split()

['hello', 'what', 'are', 'you', 'doing']

>>> b=["hello what are you doing","this is rak"]
>>> b.split()

回溯(最近一次调用): 文件“”,第1行,在 AttributeError: 'list'对象没有属性'split'

>>> rline=sc.parallelize(b)
>>> type(rline)

>>> def fwords(x):
...     return x.split()


>>> rword=rline.map(fwords)
>>> rword.collect()

[[‘你好’,‘什么’,‘是’,‘你’,‘做’],[‘这个’,‘是’,'爱你']]

>>> rwordflat=rline.flatMap(fwords)
>>> rwordflat.collect()

[‘你好’,‘什么’,‘是’,‘你’,‘做’,‘这’,‘是’,‘爱’)

希望能有所帮助。

其他回答

map:它通过对RDD的每个元素应用函数来返回一个新的RDD。.map中的函数只能返回一个项。

flatMap:与map类似,它通过对RDD的每个元素应用函数来返回一个新的RDD,但输出是扁平的。

同样,flatMap中的函数可以返回一个元素列表(0或更多)

例如:

sc.parallelize([3,4,5]).map(lambda x: range(1,x)).collect()

输出:[[1,2],[1,2,3],[1,2,3,4]]

sc.parallelize([3,4,5]).flatMap(lambda x: range(1,x)).collect()

输出:注意o/p在单个列表[1,2,1,2,3, 1,2,3,4]

来源:https://www.linkedin.com/pulse/difference-between-map-flatmap-transformations-spark-pyspark-pandey/

map(func)返回一个新的分布式数据集,该数据集通过func声明的函数传递源的每个元素。map()是单个项

其间

flatMap(func)类似于map,但是每个输入项可以映射到0个或多个输出项,因此func应该返回一个Sequence而不是单个项。

地图:

是一种高阶方法,它接受一个函数作为输入,并将其应用于源RDD中的每个元素。

http://commandstech.com/difference-between-map-and-flatmap-in-spark-what-is-map-and-flatmap-with-examples/

flatMap:

接受输入函数的高阶方法和转换操作。

所有的例子都很好....这是一个很好的视觉插图…资料来源:spark的DataFlair培训

Map: Map是Apache Spark中的转换操作。它应用于RDD的每个元素,并将结果作为新的RDD返回。在Map中,操作开发人员可以定义自己的自定义业务逻辑。同样的逻辑将应用于RDD的所有元素。

Spark RDD map函数以一个元素作为输入,根据自定义代码(由开发人员指定)处理它,每次返回一个元素。Map将一个长度为N的RDD转换为另一个长度为N的RDD。输入和输出RDD通常具有相同数量的记录。

使用scala的map示例:

val x = spark.sparkContext.parallelize(List("spark", "map", "example",  "sample", "example"), 3)
val y = x.map(x => (x, 1))
y.collect
// res0: Array[(String, Int)] = 
//    Array((spark,1), (map,1), (example,1), (sample,1), (example,1))

// rdd y can be re writen with shorter syntax in scala as 
val y = x.map((_, 1))
y.collect
// res1: Array[(String, Int)] = 
//    Array((spark,1), (map,1), (example,1), (sample,1), (example,1))

// Another example of making tuple with string and it's length
val y = x.map(x => (x, x.length))
y.collect
// res3: Array[(String, Int)] = 
//    Array((spark,5), (map,3), (example,7), (sample,6), (example,7))

FlatMap:

flatMap是一个转换操作。它应用于RDD的每个元素,并将结果作为新的RDD返回。它类似于Map,但是FlatMap允许从Map函数返回0,1或更多元素。在FlatMap操作中,开发人员可以定义自己的自定义业务逻辑。同样的逻辑将应用于RDD的所有元素。

“flatten the results”是什么意思?

FlatMap函数接受一个元素作为输入,根据自定义代码(由开发人员指定)处理它,并一次返回0个或多个元素。flatMap()将一个长度为N的RDD转换为另一个长度为M的RDD。

使用scala的flatMap示例:

val x = spark.sparkContext.parallelize(List("spark flatmap example",  "sample example"), 2)

// map operation will return Array of Arrays in following case : check type of res0
val y = x.map(x => x.split(" ")) // split(" ") returns an array of words
y.collect
// res0: Array[Array[String]] = 
//  Array(Array(spark, flatmap, example), Array(sample, example))

// flatMap operation will return Array of words in following case : Check type of res1
val y = x.flatMap(x => x.split(" "))
y.collect
//res1: Array[String] = 
//  Array(spark, flatmap, example, sample, example)

// RDD y can be re written with shorter syntax in scala as 
val y = x.flatMap(_.split(" "))
y.collect
//res2: Array[String] = 
//  Array(spark, flatmap, example, sample, example)

使用测试。以Md为例:

➜  spark-1.6.1 cat test.md
This is the first line;
This is the second line;
This is the last line.

scala> val textFile = sc.textFile("test.md")
scala> textFile.map(line => line.split(" ")).count()
res2: Long = 3

scala> textFile.flatMap(line => line.split(" ")).count()
res3: Long = 15

scala> textFile.map(line => line.split(" ")).collect()
res0: Array[Array[String]] = Array(Array(This, is, the, first, line;), Array(This, is, the, second, line;), Array(This, is, the, last, line.))

scala> textFile.flatMap(line => line.split(" ")).collect()
res1: Array[String] = Array(This, is, the, first, line;, This, is, the, second, line;, This, is, the, last, line.)

如果您使用映射方法,您将得到测试线。md,对于flatMap方法,您将得到字数。

map方法类似于flatMap,它们都返回一个新的RDD。map方法经常使用返回一个新的RDD, flatMap方法经常使用分割词。