最近有很多关于卡桑德拉的话题。

Twitter, Digg, Facebook等都在使用它。

什么时候有意义:

使用卡桑德拉, 不用卡桑德拉,还有 使用RDMS而不是Cassandra。


当前回答

除了这里的其他答案之外,沉重的单个查询与无数的轻查询负载是另一个需要考虑的问题。在nosql风格的DB中自动优化单个查询本身就比较困难。我使用过MongoDB,在尝试计算复杂查询时遇到了性能问题。我没有使用Cassandra,但我预计它会有同样的问题。

另一方面,如果您的负载预期是许多小型查询的负载,并且您希望能够轻松地向外扩展,那么您可以利用大多数NoSql数据库提供的最终一致性。注意,最终一致性实际上不是非关系数据模型的特性,但是在基于nosql的系统中实现和设置一致性要容易得多。

For a single, very heavy query, any modern RDBMS engine can do a decent job parallelizing parts of the query and take advantage of as much CPU and memory you throw at it (on a single machine). NoSql databases don't have enough information about the structure of the data to be able to make assumptions that will allow truly intelligent parallelization of a big query. They do allow you to easily scale out more servers (or cores) but once the query hits a complexity level you are basically forced to split it apart manually to parts that the NoSql engine knows how to deal with intelligently.

根据我使用MongoDB的经验,由于查询的复杂性,MongoDB最终无法对其进行优化,也无法在多个数据上运行部分查询。Mongo可以并行多个查询,但不太擅长优化单个查询。

其他回答

Apache cassandra是一个分布式数据库,用于跨许多商用服务器管理大量结构化数据,同时提供高可用性服务,没有单点故障。

该架构完全基于上限定理,即可用性和分区容忍,有趣的是最终一致。

不要使用它,如果你不存储数据卷的机架集群, 如果您不存储时间序列数据,请不要使用, 不要使用如果你不分区你的服务器, 如果你要求强烈的一致性,请不要使用。

除了上面给出的关于何时使用和何时不使用Cassandra的答案外,如果你决定使用Cassandra,你可能会考虑不使用Cassandra本身,而是使用它的众多表亲之一。

上面的一些答案已经指出了各种“NoSQL”系统,它们与Cassandra有许多相同的属性,有一些或大或小的差异,并且可能比Cassandra本身更适合您的特定需求。

Additionally, recently (several years after this question was originally asked), a Cassandra clone called Scylla (see https://en.wikipedia.org/wiki/Scylla_(database)) was released. Scylla is an open-source re-implementation of Cassandra in C++, which claims to have significantly higher throughput and lower latencies than the original Java Cassandra, while being mostly compatible with it (in features, APIs, and file formats). So if you're already considering Cassandra, you may want to consider Scylla as well.

你应该问自己以下问题:

(Volume, Velocity) Will you be writing and reading TONS of information , so much information that no one computer could handle the writes. (Global) Will you need this writing and reading capability around the world so that the writes in one part of the world are accessible in another part of the world? (Reliability) Do you need this database to be up and running all the time and never go down regardless of which Cloud, which country, whether it's VM , Container, or Bare metal? (Scale-ability) Do you need this database to be able to continue to grow easily and scale linearly (Consistency) Do you need TUNABLE consistency where some writes can happen asynchronously where as others need to be certified? (Skill) Are you willing to do what it takes to learn this technology and the data modeling that goes with creating a globally distributed database that can be fast for everyone, everywhere?

如果在这些问题中,你认为“可能”或“不”,你应该用别的词。如果你对所有问题的答案都是“当然”,那么你应该用卡桑德拉。

当你可以在一个盒子上做所有事情时,使用RDBMS。它可能比大多数方法都简单,任何人都可以使用它。

NoSQL的一般思想是,您应该使用最适合您的应用程序的数据存储。如果您有一个财务数据表,请使用SQL。如果您的对象需要复杂/缓慢的查询才能映射到关系模式,请使用对象或键/值存储。

当然,你遇到的任何现实问题都处于这两个极端之间,没有一个解决方案是完美的。您需要考虑每个存储的功能以及使用其中一个的后果,这将非常具体于您试图解决的问题。

在评估分布式数据系统时,您必须考虑CAP定理——您可以选择以下两个:一致性、可用性和分区容差。

Cassandra是一个可用的、支持最终一致性的分区容忍系统。要了解更多信息,请参阅我写的这篇博客文章:NoSQL系统的可视化指南。