最近有很多关于卡桑德拉的话题。

Twitter, Digg, Facebook等都在使用它。

什么时候有意义:

使用卡桑德拉, 不用卡桑德拉,还有 使用RDMS而不是Cassandra。


当前回答

除了这里的其他答案之外,沉重的单个查询与无数的轻查询负载是另一个需要考虑的问题。在nosql风格的DB中自动优化单个查询本身就比较困难。我使用过MongoDB,在尝试计算复杂查询时遇到了性能问题。我没有使用Cassandra,但我预计它会有同样的问题。

另一方面,如果您的负载预期是许多小型查询的负载,并且您希望能够轻松地向外扩展,那么您可以利用大多数NoSql数据库提供的最终一致性。注意,最终一致性实际上不是非关系数据模型的特性,但是在基于nosql的系统中实现和设置一致性要容易得多。

For a single, very heavy query, any modern RDBMS engine can do a decent job parallelizing parts of the query and take advantage of as much CPU and memory you throw at it (on a single machine). NoSql databases don't have enough information about the structure of the data to be able to make assumptions that will allow truly intelligent parallelization of a big query. They do allow you to easily scale out more servers (or cores) but once the query hits a complexity level you are basically forced to split it apart manually to parts that the NoSql engine knows how to deal with intelligently.

根据我使用MongoDB的经验,由于查询的复杂性,MongoDB最终无法对其进行优化,也无法在多个数据上运行部分查询。Mongo可以并行多个查询,但不太擅长优化单个查询。

其他回答

NoSQL的一般思想是,您应该使用最适合您的应用程序的数据存储。如果您有一个财务数据表,请使用SQL。如果您的对象需要复杂/缓慢的查询才能映射到关系模式,请使用对象或键/值存储。

当然,你遇到的任何现实问题都处于这两个极端之间,没有一个解决方案是完美的。您需要考虑每个存储的功能以及使用其中一个的后果,这将非常具体于您试图解决的问题。

Apache cassandra是一个分布式数据库,用于跨许多商用服务器管理大量结构化数据,同时提供高可用性服务,没有单点故障。

该架构完全基于上限定理,即可用性和分区容忍,有趣的是最终一致。

不要使用它,如果你不存储数据卷的机架集群, 如果您不存储时间序列数据,请不要使用, 不要使用如果你不分区你的服务器, 如果你要求强烈的一致性,请不要使用。

根据DataStax,当需要Cassandra时,它并不是最好的用例

1-高端硬件设备。 2- ACID兼容,无回滚(银行交易)

如果你需要一个SQL语义完全一致的数据库,Cassandra不是你的解决方案。Cassandra支持键值查找。它不支持SQL查询。Cassandra中的数据“最终是一致的”。数据的并发查找可能不一致,但最终查找是一致的。

如果你需要严格的语义,需要对SQL查询的支持,可以选择其他的解决方案,比如MySQL, PostGres,或者结合使用Cassandra和Solr。

除了这里的其他答案之外,沉重的单个查询与无数的轻查询负载是另一个需要考虑的问题。在nosql风格的DB中自动优化单个查询本身就比较困难。我使用过MongoDB,在尝试计算复杂查询时遇到了性能问题。我没有使用Cassandra,但我预计它会有同样的问题。

另一方面,如果您的负载预期是许多小型查询的负载,并且您希望能够轻松地向外扩展,那么您可以利用大多数NoSql数据库提供的最终一致性。注意,最终一致性实际上不是非关系数据模型的特性,但是在基于nosql的系统中实现和设置一致性要容易得多。

For a single, very heavy query, any modern RDBMS engine can do a decent job parallelizing parts of the query and take advantage of as much CPU and memory you throw at it (on a single machine). NoSql databases don't have enough information about the structure of the data to be able to make assumptions that will allow truly intelligent parallelization of a big query. They do allow you to easily scale out more servers (or cores) but once the query hits a complexity level you are basically forced to split it apart manually to parts that the NoSql engine knows how to deal with intelligently.

根据我使用MongoDB的经验,由于查询的复杂性,MongoDB最终无法对其进行优化,也无法在多个数据上运行部分查询。Mongo可以并行多个查询,但不太擅长优化单个查询。