这是C++代码的一块 显示一些非常特殊的行为

出于某种原因,对数据进行分类(之前奇迹般地使主环速度快近六倍:

#include <algorithm>
#include <ctime>
#include <iostream>

int main()
{
    // Generate data
    const unsigned arraySize = 32768;
    int data[arraySize];

    for (unsigned c = 0; c < arraySize; ++c)
        data[c] = std::rand() % 256;

    // !!! With this, the next loop runs faster.
    std::sort(data, data + arraySize);

    // Test
    clock_t start = clock();
    long long sum = 0;
    for (unsigned i = 0; i < 100000; ++i)
    {
        for (unsigned c = 0; c < arraySize; ++c)
        {   // Primary loop.
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    double elapsedTime = static_cast<double>(clock()-start) / CLOCKS_PER_SEC;

    std::cout << elapsedTime << '\n';
    std::cout << "sum = " << sum << '\n';
}
  • 不无std::sort(data, data + arraySize);代码在11.54秒内运行
  • 根据分类数据 代码在1.93秒内运行

(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)


起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:

import java.util.Arrays;
import java.util.Random;

public class Main
{
    public static void main(String[] args)
    {
        // Generate data
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c)
            data[c] = rnd.nextInt() % 256;

        // !!! With this, the next loop runs faster
        Arrays.sort(data);

        // Test
        long start = System.nanoTime();
        long sum = 0;
        for (int i = 0; i < 100000; ++i)
        {
            for (int c = 0; c < arraySize; ++c)
            {   // Primary loop.
                if (data[c] >= 128)
                    sum += data[c];
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

其结果类似,但不太极端。


我第一种想法是 分类能把数据带进缓存缓存,但那是愚蠢的 因为阵列是刚刚产生的。

  • 这是怎么回事?
  • 为什么处理一个分类阵列的速度要快于处理一个未排序阵列的速度?

守则正在总结一些独立的术语,因此命令不应重要。


相关/后续行动不同/以后的编译者和选项的相同效果:


当前回答

快速和简单理解的答案(阅读其他细节)

这一概念被称为子分支预测

分支预测是一种优化技术,它预言代码在被确知之前将走的道路。 这一点很重要,因为在代码执行过程中,机器预设了几条代码声明并将其储存在管道中。

问题出在有条件的分支中,有两种可能的路径或代码部分可以执行。

当预测是真实的, 优化技术 完成。

当预测是虚假的,用简单的方式解释, 管道中储存的代码声明被证明是错误的, 而实际的代码必须全部重新加载, 这需要很多时间。

正如常识所显示的,对某类物品的预测比对某类未分类物品的预测更准确。

分支预测可视化:

已分类
sorted未排序unsorted

其他回答

巴恩·斯特鲁斯特鲁斯特鲁普的回答对此问题:

这听起来像面试问题。是真的吗?你怎么知道?回答效率问题而不首先做一些测量是不明智的,所以知道如何衡量是很重要的。

于是,我用百万整数的矢量尝试过,然后得到:

Already sorted    32995 milliseconds
Shuffled          125944 milliseconds

Already sorted    18610 milliseconds
Shuffled          133304 milliseconds

Already sorted    17942 milliseconds
Shuffled          107858 milliseconds

我跑了好几次才确定。 是的,这个现象是真实的。我的关键代码是:

void run(vector<int>& v, const string& label)
{
    auto t0 = system_clock::now();
    sort(v.begin(), v.end());
    auto t1 = system_clock::now();
    cout << label
         << duration_cast<microseconds>(t1 — t0).count()
         << " milliseconds\n";
}

void tst()
{
    vector<int> v(1'000'000);
    iota(v.begin(), v.end(), 0);
    run(v, "already sorted ");
    std::shuffle(v.begin(), v.end(), std::mt19937{ std::random_device{}() });
    run(v, "shuffled    ");
}

至少这个编译器、 标准库和优化设置是真实存在的。 不同的执行可以而且确实提供了不同的答案。 事实上,有人做了更系统的研究( 快速的网络搜索会找到它) , 而大多数执行都显示了这种效果。

其中一个原因是分支预测: 类算法中的关键操作是“if(v[i] < pivot]) …”对于排序序列,测试总是真实的,而对于随机序列,选定的分支则随机变化。

另一个原因是,当矢量已经分类后,我们从不需要将元素移到正确位置。这些小细节的影响是我们看到的5或6个系数。

Quicksort(以及一般分类)是一项复杂的研究,吸引了计算机科学中最伟大的一些思想。 一种良好的功能是选择良好的算法和关注硬件的运行效果的结果。

如果您想要写入高效代码, 您需要了解一些关于机器结构的知识 。

在对数据进行分类时,业绩显著改善的原因是,如A/CN.9/WG.WG.III/WG.WG.III/WP.A/WG.WG.III/WP.A/A/WG.WG.III/WP.A/WG.A/WP.A/WG.A/WP.A/WP.A/WP.A/WG.A/WP.A/WP.A/WP.A/WP.A/WP.神秘的答案.

现在,如果我们看看代码

if (data[c] >= 128)
    sum += data[c];

我们能发现这个特别的if... else...当满足条件时,该分支将添加某种内容。这种类型的分支可以很容易地转换成条件移动语句,该语句将汇编成有条件移动指令:cmovl,在一个x86取消了分支系统,从而取消了潜在的分支预测罚款。

C因此,C++,该语句,该语句将直接(不作任何优化)编成有条件移动指令x86,是永久经营人... ? ... : ...。因此,我们将上述声明重写为相应的声明:

sum += data[c] >=128 ? data[c] : 0;

在保持可读性的同时,我们可以检查加速系数。

在一个情报机关上,核心 i7-2600K@3.4 GHz和视觉工作室2010发布模式,基准是:

x86x86

假设情景 时间( 秒)
分处 - 随机数据 8.885
分支 - 分类数据 1.528
无分支 - 随机数据 3.716
无分支 - 排序数据 3.71

x64 x64

假设情景 时间( 秒)
分处 - 随机数据 11.302
分支 - 分类数据 1.830
无分支 - 随机数据 2.736
无分支 - 排序数据 2.737

结果在多个测试中是稳健的。 当分支结果无法预测时, 我们得到一个巨大的加速, 但是当它可以预测时, 我们遭受了一点点痛苦。 事实上, 当使用有条件的动作时, 无论数据模式如何, 性能都是一样的 。

现在让我们仔细调查一下x86它们生成组件组, 我们使用两个函数来简单化max1max2.

max1使用条件分支if... else ...:

int max1(int a, int b) {
    if (a > b)
        return a;
    else
        return b;
}

max2使用长期经营人... ? ... : ...:

int max2(int a, int b) {
    return a > b ? a : b;
}

在X86-64机器上GCC -S在下面生成组件。

:max1
    movl    %edi, -4(%rbp)
    movl    %esi, -8(%rbp)
    movl    -4(%rbp), %eax
    cmpl    -8(%rbp), %eax
    jle     .L2
    movl    -4(%rbp), %eax
    movl    %eax, -12(%rbp)
    jmp     .L4
.L2:
    movl    -8(%rbp), %eax
    movl    %eax, -12(%rbp)
.L4:
    movl    -12(%rbp), %eax
    leave
    ret

:max2
    movl    %edi, -4(%rbp)
    movl    %esi, -8(%rbp)
    movl    -4(%rbp), %eax
    cmpl    %eax, -8(%rbp)
    cmovge  -8(%rbp), %eax
    leave
    ret

max2由于使用教学,使用代码要少得多cmovge但真正的好处是max2不涉及分支跳跃,jmp,如果预测结果不正确,则会受到重大性能处罚。

那么,为什么有条件的行动效果更好呢?

典型x86处理器, 执行指令分为几个阶段。 大致说来, 我们用不同的硬件处理不同阶段。 因此, 我们不必等待一个指令完成才能启动一个新的指令。 这被称为管线,.

在一个分支中,下列的训导是由前面的训导决定的,所以我们不得管线。我们不是等待的,就是预告的。

在有条件迁移的情况下,有条件迁移指令的执行分为几个阶段,但早期阶段如:FetchDecode不取决于上一个指令的结果; 只有后一个阶段需要结果。 因此, 我们只能等待一个指令执行时间的一小部分。 这就是为什么有条件移动版本在预测容易时比分支慢的原因 。

这本书计算机系统:程序员的观点,第二版请查看3.6.6节。有条件移动指令整个第4章处理器建筑第5.1.1.2节,以及第5.1.1.2节,处 处 处 预测和错误预防处罚.

有时,一些现代编译者可以以更好的性能优化我们的代码组装,有时有些编译者无法(有关代码是使用视觉工作室的本地编译者 ) 。 当无法预测的情况变得如此复杂,以至于编译者无法自动优化代码时,他们知道分支和有条件的动作之间的性能差异。

我刚读过这个问题及其答案,我觉得缺少答案。

消除我发现在管理下语言中特别出色的分支预测的一个常见方法是, 表格搜索而不是使用分支(虽然我还没有在本案中测试过它 ) 。

如果:

  1. 它是一个小桌子 很可能在处理器中隐藏
  2. 您正在一个非常紧凑的循环中运行着一些东西和/或处理器可以预加载数据。

背景和原因

从处理器的角度来看,您的内存是慢的。为了弥补速度的差异,在您的处理器( L1/L2 缓存) 中嵌入了几个缓存。 想象一下, 您正在做你的好计算, 并发现您需要一个内存。 处理器会得到它的“ 装载” 操作, 并将内存部分装入缓存中, 然后用缓存来进行其余的计算。 因为内存相对缓慢, 此“ 装载” 将会减缓您的程序 。

像分支预测一样,这在Pentium处理器中被优化了:处理器预测,它需要在操作实际到达缓存之前装入一个数据,并试图将数据装入缓存中。我们已经看到,分支预测有时会发生可怕的错误 -- -- 在最坏的情况下,你需要回去等待一个记忆负荷,这将需要永远的时间(我们已看到,分支预测有时会发生可怕的错误)。换句话说,失败的分支预测是坏的,在分支预测失败之后的记忆负荷实在是太可怕了!).

幸运的是,对于我们来说,如果记忆存取模式可以预测,处理器将装在快速缓存中,一切都很好。

我们首先需要知道的是? 虽然小一点一般比较好,但大拇指规则是坚持使用大小为 4096 字节的搜索表格。作为一个上限:如果您查看的表格大于 64K, 可能值得重新考虑 。

构建表格

因此我们发现我们可以创建一个小表格。 接下来要做的是设置一个查找功能。 查找功能通常是使用几个基本整数操作( 以及, 或者, xor, 转换, 转换, 添加, 删除, 或倍增) 的小型函数。 您想要将您的输入通过外观功能转换为表格中某种“ 独一无二的密钥 ” , 这样就可以简单给出您想要它做的所有工作的答案 。

在此情况下 : 128 表示我们可以保留这个值, < 128 表示我们摆脱它。 最简单的方法就是使用“ 和 ” : 如果我们保留它, 我们和它使用 7FFFFFFF; 如果我们想要摆脱它, 我们和它使用 0。 注意 128 也是一种2 的功率, 所以我们可以继续制作一个32768/128 整数的表格, 并填满它 1 0 和很多 7FFFFFFFFFFFF。

受管理语言

毕竟,管理下的语言会用分支来检查阵列的界限,以确保你不会搞砸...

嗯,不确切地说... : -)

在取消管理下语文的这一分支方面,已经做了相当多的工作。

for (int i = 0; i < array.Length; ++i)
{
   // Use array[i]
}

在此情况下, 编译者明显知道边界条件永远不会被击中 。 至少微软 JIT 编译者( 但我预计爪哇会做类似的事情) 将会注意到这一点并完全取消检查 。 WOW 表示没有分支 。 同样, 它也会处理其他明显的例子 。

如果您遇到管理下语言的查询问题 -- -- 关键是添加 a& 0x[something]FFF使边界检查可以预测, 并且看着它更快地发展。

本案的结果

// Generate data
int arraySize = 32768;
int[] data = new int[arraySize];

Random random = new Random(0);
for (int c = 0; c < arraySize; ++c)
{
    data[c] = random.Next(256);
}

/*To keep the spirit of the code intact, I'll make a separate lookup table
(I assume we cannot modify 'data' or the number of loops)*/

int[] lookup = new int[256];

for (int c = 0; c < 256; ++c)
{
    lookup[c] = (c >= 128) ? c : 0;
}

// Test
DateTime startTime = System.DateTime.Now;
long sum = 0;

for (int i = 0; i < 100000; ++i)
{
    // Primary loop
    for (int j = 0; j < arraySize; ++j)
    {
        /* Here you basically want to use simple operations - so no
        random branches, but things like &, |, *, -, +, etc. are fine. */
        sum += lookup[data[j]];
    }
}

DateTime endTime = System.DateTime.Now;
Console.WriteLine(endTime - startTime);
Console.WriteLine("sum = " + sum);
Console.ReadLine();

你是受害者子分支预测失败 。


分会的预测是什么?

考虑铁路交叉点:

Image showing a railroad junction 图像图像图像图像依据创用CC BY-ND 2.CC-By-SA 3.0 CC-By-SA 3.0许可证。

现在,为了争论起见,假设这是在1800年代, 在长途或无线电通信之前。

您是连接点的盲人接线员, 听到火车来电的声音。 您不知道该走哪条路。 您停止了火车, 询问司机他们想要的方向 。 然后您将开关设置得当 。

火车很重,而且有很多惰性, 所以它们需要永远的启动 并放慢速度。

有更好的办法吗?

  • 如果你猜对了,它会继续下去。
  • 如果你猜错了,船长会停下来,后退,喊你开开关。然后它就可以从另一条路重新开始。

如果你每次猜对火车永远不会停下来
如果你猜错太频繁火车会花很多时间停下来 备份 重新开始


考虑如果报表:在加工一级,它是一个分支指令:

Screenshot of compiled code containing an if statement

你是一个处理者,你看见一个分支。你不知道它会走哪条路。你做什么?你停止执行,等待以前的指令完成。然后,你继续走正确的道路。

现代处理器复杂,管道长。 这意味着它们永远需要“暖和”和“慢下来 ” 。

有更好的办法吗?

  • 如果你猜对了,你继续执行。
  • 如果您猜错了, 您需要冲洗管道, 然后滚回分支。 然后您就可以重新启动另一条路径 。

如果你每次猜对死刑将永远不会停止
如果你猜错太频繁,你花了很多时间拖延, 后退,重新开始。


这是分支预测。 我承认这不是最好的比喻, 因为火车只能用旗帜发出方向信号。 但在电脑上, 处理器不知道分支会朝哪个方向前进, 直到最后一刻。

您在战略上如何猜测如何将列车必须返回并沿着另一条路行驶的次数最小化 ? 您看看过去的历史 。 如果列车离开99%的时间, 那么您会猜到离开 。 如果列车转行, 那么您会换个猜想 。 如果列车每走三次, 您也会猜到同样的情况 。

换句话说,你试图找出一个模式 并遵循它。这或多或少是分支预测器的工作方式。

大多数应用程序都有良好的分支。 因此,现代分支预测器通常会达到超过90%的冲击率。 但是,当面对无法预见且没有可识别模式的分支时,分支预测器几乎毫无用处。

进一步读作:维基百科的“Branch 预测器”文章.


正如上面所暗示的,罪魁祸首就是这个说法:

if (data[c] >= 128)
    sum += data[c];

请注意数据分布在 0 和 255 之间。 当对数据进行分类时, 大约前半段的迭代不会输入 if 语句 。 在此之后, 它们都会输入 if 语句 。

这是对分支预测器非常友好的, 因为分支连续向同一方向运行很多次。 即使是简单的饱和计数器也会正确预测分支, 除了在切换方向之后的几处迭代之外 。

快速可视化 :

T = branch taken
N = branch not taken

data[] = 0, 1, 2, 3, 4, ... 126, 127, 128, 129, 130, ... 250, 251, 252, ...
branch = N  N  N  N  N  ...   N    N    T    T    T  ...   T    T    T  ...

       = NNNNNNNNNNNN ... NNNNNNNTTTTTTTTT ... TTTTTTTTTT  (easy to predict)

然而,当数据完全随机时,分支预测器就变得毫无用处,因为它无法预测随机数据。因此,可能会有大约50%的误用(没有比随机猜测更好的了 ) 。

data[] = 226, 185, 125, 158, 198, 144, 217, 79, 202, 118,  14, 150, 177, 182, ...
branch =   T,   T,   N,   T,   T,   T,   T,  N,   T,   N,   N,   T,   T,   T  ...

       = TTNTTTTNTNNTTT ...   (completely random - impossible to predict)

能够做些什么?

如果编译者无法将分支优化为有条件的动作, 您可以尝试一些黑客, 如果您愿意牺牲可读性来表现 。

替换:

if (data[c] >= 128)
    sum += data[c];

与:

int t = (data[c] - 128) >> 31;
sum += ~t & data[c];

这将清除分支, 并替换为一些位元操作 。

(注意这个黑客并不完全等同原始的如果声明。 但在这种情况下,它对于所有输入值都有效。data[].)

基准:核心i7 920@3.5千兆赫

C++ - 2010 - x64 释放

假设情景 时间( 秒)
分处 - 随机数据 11.777
分支 - 分类数据 2.352
无分支 - 随机数据 2.564
无分支 - 排序数据 2.587

Java - Netbeans 7.1.1 JDK 7 - x64

假设情景 时间( 秒)
分处 - 随机数据 10.93293813
分支 - 分类数据 5.643797077
无分支 - 随机数据 3.113581453
无分支 - 排序数据 3.186068823

意见:

  • 与该处:分类和未分类数据之间存在巨大差异。
  • 与哈克人:分类的数据和未分类的数据没有区别。
  • 在 C++ 案中, 黑客的进位实际上比数据排序时的分支慢。

拇指的一般规则是避免在关键循环(如本例)中出现依赖数据的分支。


更新 :

  • GCC 4.6.1 和-O3-ftree-vectorize在 x64 上能够生成一个有条件的移动, 所以分类的数据和未分类的数据之间没有区别, 两者都是快速的 。

    (或稍快:对于已经分类的案件,cmov特别是如果海合会将海合会置于关键道路上,而不是公正add特别是英特尔 之前的英特尔 Broadwellcmov有2个周期的延迟:gcc 优化标记 -O3 使代码慢于 -O2)

  • VC++/2010 即使在/Ox.

  • Intel C+++ 编译器(ICC) 11 做了奇迹般的事情。交换两个循环从而将无法预测的分支拉到外环。 它不仅能避免错误, 而且速度是 VC++ 和 GCC 所能生成的两倍。 换句话说, ICC 利用试流击败基准...

  • 如果您给 Intel 编译者无分支代码, 它会直接向导它... 并且和分支( 循环交换) 一样快 。

这表明即使是成熟的现代编译者 在优化代码的能力上 也会大不相同...

毫无疑问,我们中有些人会感兴趣的是,如何确定对CPU的分支种植者有问题的代码。cachegrind使用--branch-sim=yes将外环数量减少到10 000个,并编成g++给出这些结果:

分类 :

==32551== Branches:        656,645,130  (  656,609,208 cond +    35,922 ind)
==32551== Mispredicts:         169,556  (      169,095 cond +       461 ind)
==32551== Mispred rate:            0.0% (          0.0%     +       1.2%   )

未分类 :

==32555== Branches:        655,996,082  (  655,960,160 cond +  35,922 ind)
==32555== Mispredicts:     164,073,152  (  164,072,692 cond +     460 ind)
==32555== Mispred rate:           25.0% (         25.0%     +     1.2%   )

向下钻入cg_annotate我们可以看到有关循环:

分类 :

          Bc    Bcm Bi Bim
      10,001      4  0   0      for (unsigned i = 0; i < 10000; ++i)
           .      .  .   .      {
           .      .  .   .          // primary loop
 327,690,000 10,016  0   0          for (unsigned c = 0; c < arraySize; ++c)
           .      .  .   .          {
 327,680,000 10,006  0   0              if (data[c] >= 128)
           0      0  0   0                  sum += data[c];
           .      .  .   .          }
           .      .  .   .      }

未分类 :

          Bc         Bcm Bi Bim
      10,001           4  0   0      for (unsigned i = 0; i < 10000; ++i)
           .           .  .   .      {
           .           .  .   .          // primary loop
 327,690,000      10,038  0   0          for (unsigned c = 0; c < arraySize; ++c)
           .           .  .   .          {
 327,680,000 164,050,007  0   0              if (data[c] >= 128)
           0           0  0   0                  sum += data[c];
           .           .  .   .          }
           .           .  .   .      }

这样可以方便地识别有问题的行 - 在未排序的版本中if (data[c] >= 128)造成164 050 007个错误预测的附带条件的分支(第1行)。Bcm),根据暗礁的分支 - 指示模型, 而它只造成10,006 在分类版本中。


或者,在Linux上,你可以使用性能计数器子系统完成同样的任务,但使用CPU计数器进行本地性能。

perf stat ./sumtest_sorted

分类 :

 Performance counter stats for './sumtest_sorted':

  11808.095776 task-clock                #    0.998 CPUs utilized          
         1,062 context-switches          #    0.090 K/sec                  
            14 CPU-migrations            #    0.001 K/sec                  
           337 page-faults               #    0.029 K/sec                  
26,487,882,764 cycles                    #    2.243 GHz                    
41,025,654,322 instructions              #    1.55  insns per cycle        
 6,558,871,379 branches                  #  555.455 M/sec                  
       567,204 branch-misses             #    0.01% of all branches        

  11.827228330 seconds time elapsed

未分类 :

 Performance counter stats for './sumtest_unsorted':

  28877.954344 task-clock                #    0.998 CPUs utilized          
         2,584 context-switches          #    0.089 K/sec                  
            18 CPU-migrations            #    0.001 K/sec                  
           335 page-faults               #    0.012 K/sec                  
65,076,127,595 cycles                    #    2.253 GHz                    
41,032,528,741 instructions              #    0.63  insns per cycle        
 6,560,579,013 branches                  #  227.183 M/sec                  
 1,646,394,749 branch-misses             #   25.10% of all branches        

  28.935500947 seconds time elapsed

它还可以进行源代码批注,进行拆卸。

perf record -e branch-misses ./sumtest_unsorted
perf annotate -d sumtest_unsorted
 Percent |      Source code & Disassembly of sumtest_unsorted
------------------------------------------------
...
         :                      sum += data[c];
    0.00 :        400a1a:       mov    -0x14(%rbp),%eax
   39.97 :        400a1d:       mov    %eax,%eax
    5.31 :        400a1f:       mov    -0x20040(%rbp,%rax,4),%eax
    4.60 :        400a26:       cltq   
    0.00 :        400a28:       add    %rax,-0x30(%rbp)
...

见见性能辅导以获取更多细节。