这是C++代码的一块 显示一些非常特殊的行为
出于某种原因,对数据进行分类(之前奇迹般地使主环速度快近六倍:
#include <algorithm>
#include <ctime>
#include <iostream>
int main()
{
// Generate data
const unsigned arraySize = 32768;
int data[arraySize];
for (unsigned c = 0; c < arraySize; ++c)
data[c] = std::rand() % 256;
// !!! With this, the next loop runs faster.
std::sort(data, data + arraySize);
// Test
clock_t start = clock();
long long sum = 0;
for (unsigned i = 0; i < 100000; ++i)
{
for (unsigned c = 0; c < arraySize; ++c)
{ // Primary loop.
if (data[c] >= 128)
sum += data[c];
}
}
double elapsedTime = static_cast<double>(clock()-start) / CLOCKS_PER_SEC;
std::cout << elapsedTime << '\n';
std::cout << "sum = " << sum << '\n';
}
- 不无
std::sort(data, data + arraySize);
代码在11.54秒内运行
- 根据分类数据 代码在1.93秒内运行
(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)
起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:
import java.util.Arrays;
import java.util.Random;
public class Main
{
public static void main(String[] args)
{
// Generate data
int arraySize = 32768;
int data[] = new int[arraySize];
Random rnd = new Random(0);
for (int c = 0; c < arraySize; ++c)
data[c] = rnd.nextInt() % 256;
// !!! With this, the next loop runs faster
Arrays.sort(data);
// Test
long start = System.nanoTime();
long sum = 0;
for (int i = 0; i < 100000; ++i)
{
for (int c = 0; c < arraySize; ++c)
{ // Primary loop.
if (data[c] >= 128)
sum += data[c];
}
}
System.out.println((System.nanoTime() - start) / 1000000000.0);
System.out.println("sum = " + sum);
}
}
其结果类似,但不太极端。
我第一种想法是 分类能把数据带进缓存缓存,但那是愚蠢的 因为阵列是刚刚产生的。
- 这是怎么回事?
- 为什么处理一个分类阵列的速度要快于处理一个未排序阵列的速度?
守则正在总结一些独立的术语,因此命令不应重要。
相关/后续行动不同/以后的编译者和选项的相同效果:
如果您对这个代码可以做的更多优化感到好奇, 请考虑 :
以原始循环开始 :
for (unsigned i = 0; i < 100000; ++i)
{
for (unsigned j = 0; j < arraySize; ++j)
{
if (data[j] >= 128)
sum += data[j];
}
}
通过循环互换,我们可以安全地将这一循环改为:
for (unsigned j = 0; j < arraySize; ++j)
{
for (unsigned i = 0; i < 100000; ++i)
{
if (data[j] >= 128)
sum += data[j];
}
}
然后,你可以看到,if
条件条件在始终执行时为常数。i
循环,这样你就可以升起if
外出 :
for (unsigned j = 0; j < arraySize; ++j)
{
if (data[j] >= 128)
{
for (unsigned i = 0; i < 100000; ++i)
{
sum += data[j];
}
}
}
假设浮点模型允许, 内环会崩溃成一个单一的表达式( 假设浮点模型允许的话 ) 。/fp:fast
被抛出,例如)
for (unsigned j = 0; j < arraySize; ++j)
{
if (data[j] >= 128)
{
sum += data[j] * 100000;
}
}
这比以前快了十万倍
在同一行中(我认为没有任何答案强调这一点),最好提到有时(特别是在软件中,在软件中,性能很重要——如Linux内核),如果声明如下,你可以找到一些:
if (likely( everything_is_ok ))
{
/* Do something */
}
或类似:
if (unlikely(very_improbable_condition))
{
/* Do something */
}
两者likely()
和unlikely()
事实上,它们是通过使用诸如海合会(海合会)等东西来界定的宏观。__builtin_expect
帮助编译者插入预测代码以有利于条件, 同时考虑到用户提供的信息 。 海合会支持其他能改变运行程序行为或发布低级别指令的内建元素, 如清除缓存等 。文献文件穿过海合会现有的建筑
通常这种优化主要在硬实时应用程序或内嵌系统中找到,在这些系统中,执行时间很重要且至关重要。例如,如果您正在检查某些错误条件,而错误条件只发生1/10000 000次,那么为什么不通知编译者?这样,默认情况下,分支预测会假设该条件是假的。
由于一种被称为分支预测的现象,分类的阵列的处理速度要快于未排序的阵列。
分支预测器是一个数字电路(在计算机结构中),它试图预测一个分支会走哪条路,从而改善教学管道的流量。电路/计算机预测下一步并进行执行。
错误的预测导致回到前一步,执行另一个预测。 假设预测是正确的,代码将持续到下一步骤。 错误的预测导致重复同一步骤,直到出现正确的预测。
你问题的答案很简单
在未排列的阵列中,计算机进行多次预测,导致误差的可能性增加。而在分类的阵列中,计算机的预测减少,误差的可能性减少。 做更多的预测需要更多的时间。
排序的数组: 直路
____________________________________________________________________________________
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
未排列的队列: 曲线路
______ ________
| |__|
部门预测: 猜测/预测哪条道路是直的,未检查就沿着这条道路走
___________________________________________ Straight road
|_________________________________________|Longer road
虽然两条道路都到达同一目的地,但直路更短,另一条更长。如果你错误地选择另一条道路,就没有回头路,所以如果你选择更长的路,你就会浪费一些更多的时间。这与计算机中发生的事情相似,我希望这能帮助你更好地了解。
我还想列举:@Simon_ weaver评论中:
它不会减少预测数量 — — 它会减少不正确的预测。 它仍然必须通过循环预测每一次...
其他答复的假设是,一个人需要对数据进行分类是不正确的。
以下代码不排序整个阵列,但只排序其中的200个元素部分,因此运行速度最快。
只对 K 元素部分进行排序,以线性时间完成预处理,O(n)
,而不是O(n.log(n))
排序整个阵列需要时间 。
#include <algorithm>
#include <ctime>
#include <iostream>
int main() {
int data[32768]; const int l = sizeof data / sizeof data[0];
for (unsigned c = 0; c < l; ++c)
data[c] = std::rand() % 256;
// sort 200-element segments, not the whole array
for (unsigned c = 0; c + 200 <= l; c += 200)
std::sort(&data[c], &data[c + 200]);
clock_t start = clock();
long long sum = 0;
for (unsigned i = 0; i < 100000; ++i) {
for (unsigned c = 0; c < sizeof data / sizeof(int); ++c) {
if (data[c] >= 128)
sum += data[c];
}
}
std::cout << static_cast<double>(clock() - start) / CLOCKS_PER_SEC << std::endl;
std::cout << "sum = " << sum << std::endl;
}
这个“证明”也与任何算法问题无关, 比如排序顺序, 并且确实是分支预测。
当对数组进行排序时,数据在 0 到 255 之间分布, 大约在迭代的前半部不会输入if
- 声明if
报表如下。 )
if (data[c] >= 128)
sum += data[c];
The question is: What makes the above statement not execute in certain cases as in case of sorted data? Here comes the "branch predictor". A branch predictor is a digital circuit that tries to guess which way a branch (e.g. an if-then-else
分支预测器的目的是改善教学管道的流量。 分支预测器在实现高效运行方面发挥着关键作用 !
让我们做一些板凳标记 来更好理解它
性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性if
如果条件总是真实的,或者总是假的,处理器中的分支预测逻辑将拾取该模式。另一方面,如果该模式无法预测,那么,if
- 声明会更贵得多
让我们用不同的条件来衡量这个循环的性能:
for (int i = 0; i < max; i++)
if (condition)
sum++;
以下是环绕时间与不同的真假模式 :
Condition Pattern Time (ms)
-------------------------------------------------------
(i & 0×80000000) == 0 T repeated 322
(i & 0xffffffff) == 0 F repeated 276
(i & 1) == 0 TF alternating 760
(i & 3) == 0 TFFFTFFF… 513
(i & 2) == 0 TTFFTTFF… 1675
(i & 4) == 0 TTTTFFFFTTTTFFFF… 1275
(i & 8) == 0 8T 8F 8T 8F … 752
(i & 16) == 0 16T 16F 16T 16F … 490
“A “坏“真实的假造模式可以使if
- 计算速度比“或”慢6倍。良好当然,哪一种模式是好的,哪一种模式是坏的,取决于汇编者的确切指示和具体处理者。
因此,部门预测对业绩的影响是毫无疑问的!