这是C++代码的一块 显示一些非常特殊的行为

出于某种原因,对数据进行分类(之前奇迹般地使主环速度快近六倍:

#include <algorithm>
#include <ctime>
#include <iostream>

int main()
{
    // Generate data
    const unsigned arraySize = 32768;
    int data[arraySize];

    for (unsigned c = 0; c < arraySize; ++c)
        data[c] = std::rand() % 256;

    // !!! With this, the next loop runs faster.
    std::sort(data, data + arraySize);

    // Test
    clock_t start = clock();
    long long sum = 0;
    for (unsigned i = 0; i < 100000; ++i)
    {
        for (unsigned c = 0; c < arraySize; ++c)
        {   // Primary loop.
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    double elapsedTime = static_cast<double>(clock()-start) / CLOCKS_PER_SEC;

    std::cout << elapsedTime << '\n';
    std::cout << "sum = " << sum << '\n';
}
  • 不无std::sort(data, data + arraySize);代码在11.54秒内运行
  • 根据分类数据 代码在1.93秒内运行

(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)


起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:

import java.util.Arrays;
import java.util.Random;

public class Main
{
    public static void main(String[] args)
    {
        // Generate data
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c)
            data[c] = rnd.nextInt() % 256;

        // !!! With this, the next loop runs faster
        Arrays.sort(data);

        // Test
        long start = System.nanoTime();
        long sum = 0;
        for (int i = 0; i < 100000; ++i)
        {
            for (int c = 0; c < arraySize; ++c)
            {   // Primary loop.
                if (data[c] >= 128)
                    sum += data[c];
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

其结果类似,但不太极端。


我第一种想法是 分类能把数据带进缓存缓存,但那是愚蠢的 因为阵列是刚刚产生的。

  • 这是怎么回事?
  • 为什么处理一个分类阵列的速度要快于处理一个未排序阵列的速度?

守则正在总结一些独立的术语,因此命令不应重要。


相关/后续行动不同/以后的编译者和选项的相同效果:


当前回答

在对数据进行分类时,业绩显著改善的原因是,如A/CN.9/WG.WG.III/WG.WG.III/WP.A/WG.WG.III/WP.A/A/WG.WG.III/WP.A/WG.A/WP.A/WG.A/WP.A/WP.A/WP.A/WG.A/WP.A/WP.A/WP.A/WP.A/WP.神秘的答案.

现在,如果我们看看代码

if (data[c] >= 128)
    sum += data[c];

我们能发现这个特别的if... else...当满足条件时,该分支将添加某种内容。这种类型的分支可以很容易地转换成条件移动语句,该语句将汇编成有条件移动指令:cmovl,在一个x86取消了分支系统,从而取消了潜在的分支预测罚款。

C因此,C++,该语句,该语句将直接(不作任何优化)编成有条件移动指令x86,是永久经营人... ? ... : ...。因此,我们将上述声明重写为相应的声明:

sum += data[c] >=128 ? data[c] : 0;

在保持可读性的同时,我们可以检查加速系数。

在一个情报机关上,核心 i7-2600K@3.4 GHz和视觉工作室2010发布模式,基准是:

x86x86

假设情景 时间( 秒)
分处 - 随机数据 8.885
分支 - 分类数据 1.528
无分支 - 随机数据 3.716
无分支 - 排序数据 3.71

x64 x64

假设情景 时间( 秒)
分处 - 随机数据 11.302
分支 - 分类数据 1.830
无分支 - 随机数据 2.736
无分支 - 排序数据 2.737

结果在多个测试中是稳健的。 当分支结果无法预测时, 我们得到一个巨大的加速, 但是当它可以预测时, 我们遭受了一点点痛苦。 事实上, 当使用有条件的动作时, 无论数据模式如何, 性能都是一样的 。

现在让我们仔细调查一下x86它们生成组件组, 我们使用两个函数来简单化max1max2.

max1使用条件分支if... else ...:

int max1(int a, int b) {
    if (a > b)
        return a;
    else
        return b;
}

max2使用长期经营人... ? ... : ...:

int max2(int a, int b) {
    return a > b ? a : b;
}

在X86-64机器上GCC -S在下面生成组件。

:max1
    movl    %edi, -4(%rbp)
    movl    %esi, -8(%rbp)
    movl    -4(%rbp), %eax
    cmpl    -8(%rbp), %eax
    jle     .L2
    movl    -4(%rbp), %eax
    movl    %eax, -12(%rbp)
    jmp     .L4
.L2:
    movl    -8(%rbp), %eax
    movl    %eax, -12(%rbp)
.L4:
    movl    -12(%rbp), %eax
    leave
    ret

:max2
    movl    %edi, -4(%rbp)
    movl    %esi, -8(%rbp)
    movl    -4(%rbp), %eax
    cmpl    %eax, -8(%rbp)
    cmovge  -8(%rbp), %eax
    leave
    ret

max2由于使用教学,使用代码要少得多cmovge但真正的好处是max2不涉及分支跳跃,jmp,如果预测结果不正确,则会受到重大性能处罚。

那么,为什么有条件的行动效果更好呢?

典型x86处理器, 执行指令分为几个阶段。 大致说来, 我们用不同的硬件处理不同阶段。 因此, 我们不必等待一个指令完成才能启动一个新的指令。 这被称为管线,.

在一个分支中,下列的训导是由前面的训导决定的,所以我们不得管线。我们不是等待的,就是预告的。

在有条件迁移的情况下,有条件迁移指令的执行分为几个阶段,但早期阶段如:FetchDecode不取决于上一个指令的结果; 只有后一个阶段需要结果。 因此, 我们只能等待一个指令执行时间的一小部分。 这就是为什么有条件移动版本在预测容易时比分支慢的原因 。

这本书计算机系统:程序员的观点,第二版请查看3.6.6节。有条件移动指令整个第4章处理器建筑第5.1.1.2节,以及第5.1.1.2节,处 处 处 预测和错误预防处罚.

有时,一些现代编译者可以以更好的性能优化我们的代码组装,有时有些编译者无法(有关代码是使用视觉工作室的本地编译者 ) 。 当无法预测的情况变得如此复杂,以至于编译者无法自动优化代码时,他们知道分支和有条件的动作之间的性能差异。

其他回答

我刚读过这个问题及其答案,我觉得缺少答案。

消除我发现在管理下语言中特别出色的分支预测的一个常见方法是, 表格搜索而不是使用分支(虽然我还没有在本案中测试过它 ) 。

如果:

  1. 它是一个小桌子 很可能在处理器中隐藏
  2. 您正在一个非常紧凑的循环中运行着一些东西和/或处理器可以预加载数据。

背景和原因

从处理器的角度来看,您的内存是慢的。为了弥补速度的差异,在您的处理器( L1/L2 缓存) 中嵌入了几个缓存。 想象一下, 您正在做你的好计算, 并发现您需要一个内存。 处理器会得到它的“ 装载” 操作, 并将内存部分装入缓存中, 然后用缓存来进行其余的计算。 因为内存相对缓慢, 此“ 装载” 将会减缓您的程序 。

像分支预测一样,这在Pentium处理器中被优化了:处理器预测,它需要在操作实际到达缓存之前装入一个数据,并试图将数据装入缓存中。我们已经看到,分支预测有时会发生可怕的错误 -- -- 在最坏的情况下,你需要回去等待一个记忆负荷,这将需要永远的时间(我们已看到,分支预测有时会发生可怕的错误)。换句话说,失败的分支预测是坏的,在分支预测失败之后的记忆负荷实在是太可怕了!).

幸运的是,对于我们来说,如果记忆存取模式可以预测,处理器将装在快速缓存中,一切都很好。

我们首先需要知道的是? 虽然小一点一般比较好,但大拇指规则是坚持使用大小为 4096 字节的搜索表格。作为一个上限:如果您查看的表格大于 64K, 可能值得重新考虑 。

构建表格

因此我们发现我们可以创建一个小表格。 接下来要做的是设置一个查找功能。 查找功能通常是使用几个基本整数操作( 以及, 或者, xor, 转换, 转换, 添加, 删除, 或倍增) 的小型函数。 您想要将您的输入通过外观功能转换为表格中某种“ 独一无二的密钥 ” , 这样就可以简单给出您想要它做的所有工作的答案 。

在此情况下 : 128 表示我们可以保留这个值, < 128 表示我们摆脱它。 最简单的方法就是使用“ 和 ” : 如果我们保留它, 我们和它使用 7FFFFFFF; 如果我们想要摆脱它, 我们和它使用 0。 注意 128 也是一种2 的功率, 所以我们可以继续制作一个32768/128 整数的表格, 并填满它 1 0 和很多 7FFFFFFFFFFFF。

受管理语言

毕竟,管理下的语言会用分支来检查阵列的界限,以确保你不会搞砸...

嗯,不确切地说... : -)

在取消管理下语文的这一分支方面,已经做了相当多的工作。

for (int i = 0; i < array.Length; ++i)
{
   // Use array[i]
}

在此情况下, 编译者明显知道边界条件永远不会被击中 。 至少微软 JIT 编译者( 但我预计爪哇会做类似的事情) 将会注意到这一点并完全取消检查 。 WOW 表示没有分支 。 同样, 它也会处理其他明显的例子 。

如果您遇到管理下语言的查询问题 -- -- 关键是添加 a& 0x[something]FFF使边界检查可以预测, 并且看着它更快地发展。

本案的结果

// Generate data
int arraySize = 32768;
int[] data = new int[arraySize];

Random random = new Random(0);
for (int c = 0; c < arraySize; ++c)
{
    data[c] = random.Next(256);
}

/*To keep the spirit of the code intact, I'll make a separate lookup table
(I assume we cannot modify 'data' or the number of loops)*/

int[] lookup = new int[256];

for (int c = 0; c < 256; ++c)
{
    lookup[c] = (c >= 128) ? c : 0;
}

// Test
DateTime startTime = System.DateTime.Now;
long sum = 0;

for (int i = 0; i < 100000; ++i)
{
    // Primary loop
    for (int j = 0; j < arraySize; ++j)
    {
        /* Here you basically want to use simple operations - so no
        random branches, but things like &, |, *, -, +, etc. are fine. */
        sum += lookup[data[j]];
    }
}

DateTime endTime = System.DateTime.Now;
Console.WriteLine(endTime - startTime);
Console.WriteLine("sum = " + sum);
Console.ReadLine();

这是肯定的!

分处预测逻辑会放慢速度, 因为代码中的转换会发生! 就像你走一条直街或一条路, 转得很多,

如果对数组进行了排序,您的状态在第一步是虚假的:data[c] >= 128,然后成为通向街道尽头的整个路程的真正价值。这就是你如何更快地达到逻辑的终点。另一方面,使用一个未分类的阵列,你需要大量转动和处理,这可以保证你的代码运行速度较慢...

看看我在下面为你们创造的图象,哪条街会更快完工?

Branch Prediction

因此,从方案上说,子分支预测导致进程变慢...

最后,很高兴知道 我们有两种分支预测 每个分支将对你的代码产生不同的影响:

1. 静态

2. 动态

Branch Prediction

微处理器在第一次遇到有条件的分支时使用静态分支预测,在随后执行有条件的分支代码时使用动态分支预测。

为了有效地编写你的代码,以便利用这些规则,在撰写时if-ele 单位开关循环不一定需要固定分支预测的任何特殊代码顺序,因为通常只使用循环迭代器的条件。

其他答复的假设是,一个人需要对数据进行分类是不正确的。

以下代码不排序整个阵列,但只排序其中的200个元素部分,因此运行速度最快。

只对 K 元素部分进行排序,以线性时间完成预处理,O(n),而不是O(n.log(n))排序整个阵列需要时间 。

#include <algorithm>
#include <ctime>
#include <iostream>

int main() {
    int data[32768]; const int l = sizeof data / sizeof data[0];

    for (unsigned c = 0; c < l; ++c)
        data[c] = std::rand() % 256;

    // sort 200-element segments, not the whole array
    for (unsigned c = 0; c + 200 <= l; c += 200)
        std::sort(&data[c], &data[c + 200]);

    clock_t start = clock();
    long long sum = 0;

    for (unsigned i = 0; i < 100000; ++i) {
        for (unsigned c = 0; c < sizeof data / sizeof(int); ++c) {
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    std::cout << static_cast<double>(clock() - start) / CLOCKS_PER_SEC << std::endl;
    std::cout << "sum = " << sum << std::endl;
}

这个“证明”也与任何算法问题无关, 比如排序顺序, 并且确实是分支预测。

当对数组进行排序时,数据在 0 到 255 之间分布, 大约在迭代的前半部不会输入if- 声明if报表如下。 )

if (data[c] >= 128)
    sum += data[c];

The question is: What makes the above statement not execute in certain cases as in case of sorted data? Here comes the "branch predictor". A branch predictor is a digital circuit that tries to guess which way a branch (e.g. an if-then-else分支预测器的目的是改善教学管道的流量。 分支预测器在实现高效运行方面发挥着关键作用 !

让我们做一些板凳标记 来更好理解它

性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性if如果条件总是真实的,或者总是假的,处理器中的分支预测逻辑将拾取该模式。另一方面,如果该模式无法预测,那么,if- 声明会更贵得多

让我们用不同的条件来衡量这个循环的性能:

for (int i = 0; i < max; i++)
    if (condition)
        sum++;

以下是环绕时间与不同的真假模式 :

Condition                Pattern             Time (ms)
-------------------------------------------------------
(i & 0×80000000) == 0    T repeated          322

(i & 0xffffffff) == 0    F repeated          276

(i & 1) == 0             TF alternating      760

(i & 3) == 0             TFFFTFFF…           513

(i & 2) == 0             TTFFTTFF…           1675

(i & 4) == 0             TTTTFFFFTTTTFFFF…   1275

(i & 8) == 0             8T 8F 8T 8F …       752

(i & 16) == 0            16T 16F 16T 16F …   490

“A ““真实的假造模式可以使if- 计算速度比“或”慢6倍。良好当然,哪一种模式是好的,哪一种模式是坏的,取决于汇编者的确切指示和具体处理者。

因此,部门预测对业绩的影响是毫无疑问的!

快速和简单理解的答案(阅读其他细节)

这一概念被称为子分支预测

分支预测是一种优化技术,它预言代码在被确知之前将走的道路。 这一点很重要,因为在代码执行过程中,机器预设了几条代码声明并将其储存在管道中。

问题出在有条件的分支中,有两种可能的路径或代码部分可以执行。

当预测是真实的, 优化技术 完成。

当预测是虚假的,用简单的方式解释, 管道中储存的代码声明被证明是错误的, 而实际的代码必须全部重新加载, 这需要很多时间。

正如常识所显示的,对某类物品的预测比对某类未分类物品的预测更准确。

分支预测可视化:

已分类
sorted未排序unsorted