这是C++代码的一块 显示一些非常特殊的行为

出于某种原因,对数据进行分类(之前奇迹般地使主环速度快近六倍:

#include <algorithm>
#include <ctime>
#include <iostream>

int main()
{
    // Generate data
    const unsigned arraySize = 32768;
    int data[arraySize];

    for (unsigned c = 0; c < arraySize; ++c)
        data[c] = std::rand() % 256;

    // !!! With this, the next loop runs faster.
    std::sort(data, data + arraySize);

    // Test
    clock_t start = clock();
    long long sum = 0;
    for (unsigned i = 0; i < 100000; ++i)
    {
        for (unsigned c = 0; c < arraySize; ++c)
        {   // Primary loop.
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    double elapsedTime = static_cast<double>(clock()-start) / CLOCKS_PER_SEC;

    std::cout << elapsedTime << '\n';
    std::cout << "sum = " << sum << '\n';
}
  • 不无std::sort(data, data + arraySize);代码在11.54秒内运行
  • 根据分类数据 代码在1.93秒内运行

(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)


起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:

import java.util.Arrays;
import java.util.Random;

public class Main
{
    public static void main(String[] args)
    {
        // Generate data
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c)
            data[c] = rnd.nextInt() % 256;

        // !!! With this, the next loop runs faster
        Arrays.sort(data);

        // Test
        long start = System.nanoTime();
        long sum = 0;
        for (int i = 0; i < 100000; ++i)
        {
            for (int c = 0; c < arraySize; ++c)
            {   // Primary loop.
                if (data[c] >= 128)
                    sum += data[c];
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

其结果类似,但不太极端。


我第一种想法是 分类能把数据带进缓存缓存,但那是愚蠢的 因为阵列是刚刚产生的。

  • 这是怎么回事?
  • 为什么处理一个分类阵列的速度要快于处理一个未排序阵列的速度?

守则正在总结一些独立的术语,因此命令不应重要。


相关/后续行动不同/以后的编译者和选项的相同效果:


当前回答

以上行为之所以发生 是因为分局的预测

要理解分支预测,首先必须了解指令管道。

运行一个指令的步骤可以与运行上一个和下一个指令的步骤序列相重叠,这样可以同时同时执行不同的步骤。 这种技术被称为指令管衬,用来增加现代处理器的输送量。 要更好地了解这一点,请看维基百科的示例.

一般而言,现代处理器有相当长(和宽)的管道,因此许多教学可能正在飞行中。现代微处理器 A 90-minute指南!首先是引入基本自序管管,然后从那里开始。

但为容易,让我们考虑一个简单的 单用这四个步骤的单向输油管。
(像经典的5级RIRC,但忽略了单独的MEM阶段。 ))

  1. IF -- -- 从内存获取指令
  2. ID - 解码指令
  3. EX - 执行指令
  4. WB - 回写到 CPU 注册簿

一般为2项指示提供4级输油管。
4-stage pipeline in general

回到上述问题,让我们考虑以下指示:

                        A) if (data[c] >= 128)
                                /\
                               /  \
                              /    \
                        true /      \ false
                            /        \
                           /          \
                          /            \
                         /              \
              B) sum += data[c];          C) for loop or print().

如果没有部门预测,将出现下列情况:

要执行指令B或指令C,处理器必须等待(缓档直至指示A离开输油管中的EX阶段,因为进入指示B或指示C的决定取决于指示A的结果(即从何处取取取)。

无预测:何时if条件为真 : enter image description here

无预测:何时if条件为假 : enter image description here

由于等待指示A的结果,在上述情况下(没有分支预测;对真实和假的预测)所花的CPU周期总数为7个。

那么什么是分支预测?

分支预测器将尝试猜测分支( 如果- 如果- 如果- 如果- else 结构) 将往哪个方向走, 然后再确定这一点。 它不会等待指令 A 到达管道的 EX 阶段, 而是会猜测决定并转到该指令( 以我们为例 ) ( B 或 C ) 。

如果猜对了,输油管看起来是这样的: enter image description here

如果后来发现猜测是错误的,那么部分执行的指示就会被丢弃,管道从正确的分支开始,造成延误。如果分支错误,浪费的时间相当于管道从取货阶段到执行阶段的阶段数。现代微处理器往往有相当长的管道,因此错误处理的延迟时间在10到20小时的周期之间。输油管越长,对货物的需求就越大。分支分支预测器.

在业务方案代码中,这是有条件的、分支预测员第一次没有任何信息作为预测基础,因此第一次随机选择下一个指令。 (或返回到后方)静静在循环中,它可以将预测建立在历史之上。对于按升序排序的阵列,有三种可能性:

  1. 所有元素小于 128
  2. 所有元素大于 128
  3. 一些开始的新元素还不到128个,后来则大于128个

让我们假设预测器 将总是假设 真正的分支 在第一个运行。

因此,在第一种情况下,它总是要真正的分支,因为历史上它所有的预测都是正确的。 在第二种情况下,它最初预测错误,但经过几次反复,它会正确预测。 在第二种情况下,它最初将正确预测,直到元素低于128。 之后,它会失败一段时间,当它看到分支预测在历史上失败时,它会失败一段时间,它会正确。

在所有这些情况下,失败的数量将太少,因此,只需放弃部分执行的指示,从正确的分支重新开始,就只需要放弃部分执行的指示的几次,导致CPU周期减少。

但如果是随机的未排序数组,预测将需要丢弃部分执行的指示,然后大部分时间以正确的分支重新开始,结果与分类数组相比,CPU周期会增加。


进一步读作:

  • 现代微处理器 A 90-minute指南!
  • Dan Luu关于分支预测的文章(涵盖较老的分支预测器,而不是现代的IT-TAGE或倍数)
  • https://en.wikipedia.org/wiki/Branch_predictor
  • 处处预测和口译员的工作表现 -- -- 不相信民俗- 2015年,Intel's Haswell在预测Python口译员主循环的间接分支(由于不简单模式,历史上存在问题)方面表现如何,相对于未使用 IT-TAGE 的早期CPU。 (虽然他们不帮助完全随机的这个案例。如果在Skylake CPU的环中,当源被编译为分支时,如果在环中,Skylake CPU的误判率仍为50%。 )
  • 最新 Intel 处理器的静态分支预测- CPUs在运行分支指令时实际做什么,该指令没有动态预测。ifbreak)))后取(像环状)已被使用,因为它比什么都没有好。 设置代码, 这样快速路径/ 普通大小写最小化的分支对 I -cache 密度和静态预测都有好处, 所以编译者已经这样做了 。实际效果联 联 年 月 日 月 日 月 月 日 月 月 日 月 月 月 日 月 月 日 月 月 日 月 月 月 日 月 月 日 月 月 月 日 月 的 月 月 月 日 月 月 日 月 的 月 月 月 月 日 月 月 月likely / unlikely在 C 源中提示, 而不是在大多数 CPU 中暗示硬件分支预测, 除了通过静态预测。 )

其他回答

在分类的情况下,你可以做的比依靠成功的分支预测或任何无分支比较的把戏:完全删除分支。

事实上,阵阵列被分割在一个毗连区内,data < 128data >= 128。因此,您应该用 a 来找到分区点脑细胞细胞研究(使用Lg(arraySize) = 15比较),然后从该点做一个直线积累。

类似的东西( 未检查 )

int i= 0, j, k= arraySize;
while (i < k)
{
  j= (i + k) >> 1;
  if (data[j] >= 128)
    k= j;
  else
    i= j;
}
sum= 0;
for (; i < arraySize; i++)
  sum+= data[i];

或, 略微糊涂

int i, k, j= (i + k) >> 1;
for (i= 0, k= arraySize; i < k; (data[j] >= 128 ? k : i)= j)
  j= (i + k) >> 1;
for (sum= 0; i < arraySize; i++)
  sum+= data[i];

一种既快又快的方法,约近分类或未排序的解决方案为 :sum= 3137536;(假设分布真正统一,预计价值为191.5的16384个样本):-)

快速和简单理解的答案(阅读其他细节)

这一概念被称为子分支预测

分支预测是一种优化技术,它预言代码在被确知之前将走的道路。 这一点很重要,因为在代码执行过程中,机器预设了几条代码声明并将其储存在管道中。

问题出在有条件的分支中,有两种可能的路径或代码部分可以执行。

当预测是真实的, 优化技术 完成。

当预测是虚假的,用简单的方式解释, 管道中储存的代码声明被证明是错误的, 而实际的代码必须全部重新加载, 这需要很多时间。

正如常识所显示的,对某类物品的预测比对某类未分类物品的预测更准确。

分支预测可视化:

已分类
sorted未排序unsorted

毫无疑问,我们中有些人会感兴趣的是,如何确定对CPU的分支种植者有问题的代码。cachegrind使用--branch-sim=yes将外环数量减少到10 000个,并编成g++给出这些结果:

分类 :

==32551== Branches:        656,645,130  (  656,609,208 cond +    35,922 ind)
==32551== Mispredicts:         169,556  (      169,095 cond +       461 ind)
==32551== Mispred rate:            0.0% (          0.0%     +       1.2%   )

未分类 :

==32555== Branches:        655,996,082  (  655,960,160 cond +  35,922 ind)
==32555== Mispredicts:     164,073,152  (  164,072,692 cond +     460 ind)
==32555== Mispred rate:           25.0% (         25.0%     +     1.2%   )

向下钻入cg_annotate我们可以看到有关循环:

分类 :

          Bc    Bcm Bi Bim
      10,001      4  0   0      for (unsigned i = 0; i < 10000; ++i)
           .      .  .   .      {
           .      .  .   .          // primary loop
 327,690,000 10,016  0   0          for (unsigned c = 0; c < arraySize; ++c)
           .      .  .   .          {
 327,680,000 10,006  0   0              if (data[c] >= 128)
           0      0  0   0                  sum += data[c];
           .      .  .   .          }
           .      .  .   .      }

未分类 :

          Bc         Bcm Bi Bim
      10,001           4  0   0      for (unsigned i = 0; i < 10000; ++i)
           .           .  .   .      {
           .           .  .   .          // primary loop
 327,690,000      10,038  0   0          for (unsigned c = 0; c < arraySize; ++c)
           .           .  .   .          {
 327,680,000 164,050,007  0   0              if (data[c] >= 128)
           0           0  0   0                  sum += data[c];
           .           .  .   .          }
           .           .  .   .      }

这样可以方便地识别有问题的行 - 在未排序的版本中if (data[c] >= 128)造成164 050 007个错误预测的附带条件的分支(第1行)。Bcm),根据暗礁的分支 - 指示模型, 而它只造成10,006 在分类版本中。


或者,在Linux上,你可以使用性能计数器子系统完成同样的任务,但使用CPU计数器进行本地性能。

perf stat ./sumtest_sorted

分类 :

 Performance counter stats for './sumtest_sorted':

  11808.095776 task-clock                #    0.998 CPUs utilized          
         1,062 context-switches          #    0.090 K/sec                  
            14 CPU-migrations            #    0.001 K/sec                  
           337 page-faults               #    0.029 K/sec                  
26,487,882,764 cycles                    #    2.243 GHz                    
41,025,654,322 instructions              #    1.55  insns per cycle        
 6,558,871,379 branches                  #  555.455 M/sec                  
       567,204 branch-misses             #    0.01% of all branches        

  11.827228330 seconds time elapsed

未分类 :

 Performance counter stats for './sumtest_unsorted':

  28877.954344 task-clock                #    0.998 CPUs utilized          
         2,584 context-switches          #    0.089 K/sec                  
            18 CPU-migrations            #    0.001 K/sec                  
           335 page-faults               #    0.012 K/sec                  
65,076,127,595 cycles                    #    2.253 GHz                    
41,032,528,741 instructions              #    0.63  insns per cycle        
 6,560,579,013 branches                  #  227.183 M/sec                  
 1,646,394,749 branch-misses             #   25.10% of all branches        

  28.935500947 seconds time elapsed

它还可以进行源代码批注,进行拆卸。

perf record -e branch-misses ./sumtest_unsorted
perf annotate -d sumtest_unsorted
 Percent |      Source code & Disassembly of sumtest_unsorted
------------------------------------------------
...
         :                      sum += data[c];
    0.00 :        400a1a:       mov    -0x14(%rbp),%eax
   39.97 :        400a1d:       mov    %eax,%eax
    5.31 :        400a1f:       mov    -0x20040(%rbp,%rax,4),%eax
    4.60 :        400a26:       cltq   
    0.00 :        400a28:       add    %rax,-0x30(%rbp)
...

见见性能辅导以获取更多细节。

由于一种被称为分支预测的现象,分类的阵列的处理速度要快于未排序的阵列。

分支预测器是一个数字电路(在计算机结构中),它试图预测一个分支会走哪条路,从而改善教学管道的流量。电路/计算机预测下一步并进行执行。

错误的预测导致回到前一步,执行另一个预测。 假设预测是正确的,代码将持续到下一步骤。 错误的预测导致重复同一步骤,直到出现正确的预测。

你问题的答案很简单

在未排列的阵列中,计算机进行多次预测,导致误差的可能性增加。而在分类的阵列中,计算机的预测减少,误差的可能性减少。 做更多的预测需要更多的时间。

排序的数组: 直路

____________________________________________________________________________________
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

未排列的队列: 曲线路

______   ________
|     |__|

部门预测: 猜测/预测哪条道路是直的,未检查就沿着这条道路走

___________________________________________ Straight road
 |_________________________________________|Longer road

虽然两条道路都到达同一目的地,但直路更短,另一条更长。如果你错误地选择另一条道路,就没有回头路,所以如果你选择更长的路,你就会浪费一些更多的时间。这与计算机中发生的事情相似,我希望这能帮助你更好地了解。


我还想列举:@Simon_ weaver评论中:

它不会减少预测数量 — — 它会减少不正确的预测。 它仍然必须通过循环预测每一次...

在对数据进行分类时,业绩显著改善的原因是,如A/CN.9/WG.WG.III/WG.WG.III/WP.A/WG.WG.III/WP.A/A/WG.WG.III/WP.A/WG.A/WP.A/WG.A/WP.A/WP.A/WP.A/WG.A/WP.A/WP.A/WP.A/WP.A/WP.神秘的答案.

现在,如果我们看看代码

if (data[c] >= 128)
    sum += data[c];

我们能发现这个特别的if... else...当满足条件时,该分支将添加某种内容。这种类型的分支可以很容易地转换成条件移动语句,该语句将汇编成有条件移动指令:cmovl,在一个x86取消了分支系统,从而取消了潜在的分支预测罚款。

C因此,C++,该语句,该语句将直接(不作任何优化)编成有条件移动指令x86,是永久经营人... ? ... : ...。因此,我们将上述声明重写为相应的声明:

sum += data[c] >=128 ? data[c] : 0;

在保持可读性的同时,我们可以检查加速系数。

在一个情报机关上,核心 i7-2600K@3.4 GHz和视觉工作室2010发布模式,基准是:

x86x86

假设情景 时间( 秒)
分处 - 随机数据 8.885
分支 - 分类数据 1.528
无分支 - 随机数据 3.716
无分支 - 排序数据 3.71

x64 x64

假设情景 时间( 秒)
分处 - 随机数据 11.302
分支 - 分类数据 1.830
无分支 - 随机数据 2.736
无分支 - 排序数据 2.737

结果在多个测试中是稳健的。 当分支结果无法预测时, 我们得到一个巨大的加速, 但是当它可以预测时, 我们遭受了一点点痛苦。 事实上, 当使用有条件的动作时, 无论数据模式如何, 性能都是一样的 。

现在让我们仔细调查一下x86它们生成组件组, 我们使用两个函数来简单化max1max2.

max1使用条件分支if... else ...:

int max1(int a, int b) {
    if (a > b)
        return a;
    else
        return b;
}

max2使用长期经营人... ? ... : ...:

int max2(int a, int b) {
    return a > b ? a : b;
}

在X86-64机器上GCC -S在下面生成组件。

:max1
    movl    %edi, -4(%rbp)
    movl    %esi, -8(%rbp)
    movl    -4(%rbp), %eax
    cmpl    -8(%rbp), %eax
    jle     .L2
    movl    -4(%rbp), %eax
    movl    %eax, -12(%rbp)
    jmp     .L4
.L2:
    movl    -8(%rbp), %eax
    movl    %eax, -12(%rbp)
.L4:
    movl    -12(%rbp), %eax
    leave
    ret

:max2
    movl    %edi, -4(%rbp)
    movl    %esi, -8(%rbp)
    movl    -4(%rbp), %eax
    cmpl    %eax, -8(%rbp)
    cmovge  -8(%rbp), %eax
    leave
    ret

max2由于使用教学,使用代码要少得多cmovge但真正的好处是max2不涉及分支跳跃,jmp,如果预测结果不正确,则会受到重大性能处罚。

那么,为什么有条件的行动效果更好呢?

典型x86处理器, 执行指令分为几个阶段。 大致说来, 我们用不同的硬件处理不同阶段。 因此, 我们不必等待一个指令完成才能启动一个新的指令。 这被称为管线,.

在一个分支中,下列的训导是由前面的训导决定的,所以我们不得管线。我们不是等待的,就是预告的。

在有条件迁移的情况下,有条件迁移指令的执行分为几个阶段,但早期阶段如:FetchDecode不取决于上一个指令的结果; 只有后一个阶段需要结果。 因此, 我们只能等待一个指令执行时间的一小部分。 这就是为什么有条件移动版本在预测容易时比分支慢的原因 。

这本书计算机系统:程序员的观点,第二版请查看3.6.6节。有条件移动指令整个第4章处理器建筑第5.1.1.2节,以及第5.1.1.2节,处 处 处 预测和错误预防处罚.

有时,一些现代编译者可以以更好的性能优化我们的代码组装,有时有些编译者无法(有关代码是使用视觉工作室的本地编译者 ) 。 当无法预测的情况变得如此复杂,以至于编译者无法自动优化代码时,他们知道分支和有条件的动作之间的性能差异。