这是C++代码的一块 显示一些非常特殊的行为

出于某种原因,对数据进行分类(之前奇迹般地使主环速度快近六倍:

#include <algorithm>
#include <ctime>
#include <iostream>

int main()
{
    // Generate data
    const unsigned arraySize = 32768;
    int data[arraySize];

    for (unsigned c = 0; c < arraySize; ++c)
        data[c] = std::rand() % 256;

    // !!! With this, the next loop runs faster.
    std::sort(data, data + arraySize);

    // Test
    clock_t start = clock();
    long long sum = 0;
    for (unsigned i = 0; i < 100000; ++i)
    {
        for (unsigned c = 0; c < arraySize; ++c)
        {   // Primary loop.
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    double elapsedTime = static_cast<double>(clock()-start) / CLOCKS_PER_SEC;

    std::cout << elapsedTime << '\n';
    std::cout << "sum = " << sum << '\n';
}
  • 不无std::sort(data, data + arraySize);代码在11.54秒内运行
  • 根据分类数据 代码在1.93秒内运行

(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)


起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:

import java.util.Arrays;
import java.util.Random;

public class Main
{
    public static void main(String[] args)
    {
        // Generate data
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c)
            data[c] = rnd.nextInt() % 256;

        // !!! With this, the next loop runs faster
        Arrays.sort(data);

        // Test
        long start = System.nanoTime();
        long sum = 0;
        for (int i = 0; i < 100000; ++i)
        {
            for (int c = 0; c < arraySize; ++c)
            {   // Primary loop.
                if (data[c] >= 128)
                    sum += data[c];
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

其结果类似,但不太极端。


我第一种想法是 分类能把数据带进缓存缓存,但那是愚蠢的 因为阵列是刚刚产生的。

  • 这是怎么回事?
  • 为什么处理一个分类阵列的速度要快于处理一个未排序阵列的速度?

守则正在总结一些独立的术语,因此命令不应重要。


相关/后续行动不同/以后的编译者和选项的相同效果:


当前回答

避免分支预测错误的一种方法是建立一个搜索表,并用数据来编制索引。 Stefan de Bruijn在答复中讨论了这一点。

但在此情况下,我们知道值在范围[0,255],我们只关心值 128。这意味着我们可以很容易地提取一小块来说明我们是否想要一个值:通过将数据移到右边的7位数,我们只剩下0位或1位数,我们只有1位数时才想要增加值。让我们把这个位数称为“决定位数 ” 。

将决定位数的 0/1 值作为索引输入一个阵列, 我们就可以生成一个代码, 无论数据是排序还是未排序, 都同样快速。 我们的代码总是会添加一个值, 但是当决定位数为 0 时, 我们将会添加一个值, 我们并不关心的地方 。 以下是代码 :

// Test
clock_t start = clock();
long long a[] = {0, 0};
long long sum;

for (unsigned i = 0; i < 100000; ++i)
{
    // Primary loop
    for (unsigned c = 0; c < arraySize; ++c)
    {
        int j = (data[c] >> 7);
        a[j] += data[c];
    }
}

double elapsedTime = static_cast<double>(clock() - start) / CLOCKS_PER_SEC;
sum = a[1];

此代码浪费了一半的添加值, 但从未出现分支预测失败 。 随机数据比有实际的如果声明的版本要快得多 。

但在我的测试中,一个清晰的查看表比这个稍快一些, 可能是因为对一个查看表的索引比位变换略快一些。 这显示了我的代码是如何设置和使用搜索表的( 无法想象地称为“ 搜索表 ” ) 。lut代码中“ 查看表格” 。 这是 C++ 代码 :

// Declare and then fill in the lookup table
int lut[256];
for (unsigned c = 0; c < 256; ++c)
    lut[c] = (c >= 128) ? c : 0;

// Use the lookup table after it is built
for (unsigned i = 0; i < 100000; ++i)
{
    // Primary loop
    for (unsigned c = 0; c < arraySize; ++c)
    {
        sum += lut[data[c]];
    }
}

在此情况下, 查看表只有256 字节, 所以它在一个缓存中非常适合, 并且非常快。 如果数据是 24 位值, 而我们只想要其中一半的话, 这个技术就不会有效... 搜索表会太大而不切实际。 另一方面, 我们可以将上面显示的两种技术结合起来: 首先将比特移开, 然后将一个查看表索引。 对于一个仅需要顶端半值的 24 位值, 我们可能会将数据右移12 位值, 并留下一个 12 位值的表格索引。 12 位表指数意味着一个有 4096 个值的表格, 这可能是实用的 。

将技术编成一个阵列,而不是使用if语句,可用于决定使用哪个指针。我看到一个实施二进制树的图书馆,而不是有两个命名指针(指针)。pLeftpRight或什么的)有长2至2的指针阵列,并使用“决定位位”技术来决定应跟随哪一个。例如,而不是:

if (x < node->value)
    node = node->pLeft;
else
    node = node->pRight;

这个图书馆会做一些事情,比如:

i = (x < node->value);
node = node->link[i];

以下是这个代码的链接:红黑树, 永久封存

其他回答

在同一行中(我认为没有任何答案强调这一点),最好提到有时(特别是在软件中,在软件中,性能很重要——如Linux内核),如果声明如下,你可以找到一些:

if (likely( everything_is_ok ))
{
    /* Do something */
}

或类似:

if (unlikely(very_improbable_condition))
{
    /* Do something */    
}

两者likely()unlikely()事实上,它们是通过使用诸如海合会(海合会)等东西来界定的宏观。__builtin_expect帮助编译者插入预测代码以有利于条件, 同时考虑到用户提供的信息 。 海合会支持其他能改变运行程序行为或发布低级别指令的内建元素, 如清除缓存等 。文献文件穿过海合会现有的建筑

通常这种优化主要在硬实时应用程序或内嵌系统中找到,在这些系统中,执行时间很重要且至关重要。例如,如果您正在检查某些错误条件,而错误条件只发生1/10000 000次,那么为什么不通知编译者?这样,默认情况下,分支预测会假设该条件是假的。

你是受害者子分支预测失败 。


分会的预测是什么?

考虑铁路交叉点:

Image showing a railroad junction 图像图像图像图像依据创用CC BY-ND 2.CC-By-SA 3.0 CC-By-SA 3.0许可证。

现在,为了争论起见,假设这是在1800年代, 在长途或无线电通信之前。

您是连接点的盲人接线员, 听到火车来电的声音。 您不知道该走哪条路。 您停止了火车, 询问司机他们想要的方向 。 然后您将开关设置得当 。

火车很重,而且有很多惰性, 所以它们需要永远的启动 并放慢速度。

有更好的办法吗?

  • 如果你猜对了,它会继续下去。
  • 如果你猜错了,船长会停下来,后退,喊你开开关。然后它就可以从另一条路重新开始。

如果你每次猜对火车永远不会停下来
如果你猜错太频繁火车会花很多时间停下来 备份 重新开始


考虑如果报表:在加工一级,它是一个分支指令:

Screenshot of compiled code containing an if statement

你是一个处理者,你看见一个分支。你不知道它会走哪条路。你做什么?你停止执行,等待以前的指令完成。然后,你继续走正确的道路。

现代处理器复杂,管道长。 这意味着它们永远需要“暖和”和“慢下来 ” 。

有更好的办法吗?

  • 如果你猜对了,你继续执行。
  • 如果您猜错了, 您需要冲洗管道, 然后滚回分支。 然后您就可以重新启动另一条路径 。

如果你每次猜对死刑将永远不会停止
如果你猜错太频繁,你花了很多时间拖延, 后退,重新开始。


这是分支预测。 我承认这不是最好的比喻, 因为火车只能用旗帜发出方向信号。 但在电脑上, 处理器不知道分支会朝哪个方向前进, 直到最后一刻。

您在战略上如何猜测如何将列车必须返回并沿着另一条路行驶的次数最小化 ? 您看看过去的历史 。 如果列车离开99%的时间, 那么您会猜到离开 。 如果列车转行, 那么您会换个猜想 。 如果列车每走三次, 您也会猜到同样的情况 。

换句话说,你试图找出一个模式 并遵循它。这或多或少是分支预测器的工作方式。

大多数应用程序都有良好的分支。 因此,现代分支预测器通常会达到超过90%的冲击率。 但是,当面对无法预见且没有可识别模式的分支时,分支预测器几乎毫无用处。

进一步读作:维基百科的“Branch 预测器”文章.


正如上面所暗示的,罪魁祸首就是这个说法:

if (data[c] >= 128)
    sum += data[c];

请注意数据分布在 0 和 255 之间。 当对数据进行分类时, 大约前半段的迭代不会输入 if 语句 。 在此之后, 它们都会输入 if 语句 。

这是对分支预测器非常友好的, 因为分支连续向同一方向运行很多次。 即使是简单的饱和计数器也会正确预测分支, 除了在切换方向之后的几处迭代之外 。

快速可视化 :

T = branch taken
N = branch not taken

data[] = 0, 1, 2, 3, 4, ... 126, 127, 128, 129, 130, ... 250, 251, 252, ...
branch = N  N  N  N  N  ...   N    N    T    T    T  ...   T    T    T  ...

       = NNNNNNNNNNNN ... NNNNNNNTTTTTTTTT ... TTTTTTTTTT  (easy to predict)

然而,当数据完全随机时,分支预测器就变得毫无用处,因为它无法预测随机数据。因此,可能会有大约50%的误用(没有比随机猜测更好的了 ) 。

data[] = 226, 185, 125, 158, 198, 144, 217, 79, 202, 118,  14, 150, 177, 182, ...
branch =   T,   T,   N,   T,   T,   T,   T,  N,   T,   N,   N,   T,   T,   T  ...

       = TTNTTTTNTNNTTT ...   (completely random - impossible to predict)

能够做些什么?

如果编译者无法将分支优化为有条件的动作, 您可以尝试一些黑客, 如果您愿意牺牲可读性来表现 。

替换:

if (data[c] >= 128)
    sum += data[c];

与:

int t = (data[c] - 128) >> 31;
sum += ~t & data[c];

这将清除分支, 并替换为一些位元操作 。

(注意这个黑客并不完全等同原始的如果声明。 但在这种情况下,它对于所有输入值都有效。data[].)

基准:核心i7 920@3.5千兆赫

C++ - 2010 - x64 释放

假设情景 时间( 秒)
分处 - 随机数据 11.777
分支 - 分类数据 2.352
无分支 - 随机数据 2.564
无分支 - 排序数据 2.587

Java - Netbeans 7.1.1 JDK 7 - x64

假设情景 时间( 秒)
分处 - 随机数据 10.93293813
分支 - 分类数据 5.643797077
无分支 - 随机数据 3.113581453
无分支 - 排序数据 3.186068823

意见:

  • 与该处:分类和未分类数据之间存在巨大差异。
  • 与哈克人:分类的数据和未分类的数据没有区别。
  • 在 C++ 案中, 黑客的进位实际上比数据排序时的分支慢。

拇指的一般规则是避免在关键循环(如本例)中出现依赖数据的分支。


更新 :

  • GCC 4.6.1 和-O3-ftree-vectorize在 x64 上能够生成一个有条件的移动, 所以分类的数据和未分类的数据之间没有区别, 两者都是快速的 。

    (或稍快:对于已经分类的案件,cmov特别是如果海合会将海合会置于关键道路上,而不是公正add特别是英特尔 之前的英特尔 Broadwellcmov有2个周期的延迟:gcc 优化标记 -O3 使代码慢于 -O2)

  • VC++/2010 即使在/Ox.

  • Intel C+++ 编译器(ICC) 11 做了奇迹般的事情。交换两个循环从而将无法预测的分支拉到外环。 它不仅能避免错误, 而且速度是 VC++ 和 GCC 所能生成的两倍。 换句话说, ICC 利用试流击败基准...

  • 如果您给 Intel 编译者无分支代码, 它会直接向导它... 并且和分支( 循环交换) 一样快 。

这表明即使是成熟的现代编译者 在优化代码的能力上 也会大不相同...

避免分支预测错误的一种方法是建立一个搜索表,并用数据来编制索引。 Stefan de Bruijn在答复中讨论了这一点。

但在此情况下,我们知道值在范围[0,255],我们只关心值 128。这意味着我们可以很容易地提取一小块来说明我们是否想要一个值:通过将数据移到右边的7位数,我们只剩下0位或1位数,我们只有1位数时才想要增加值。让我们把这个位数称为“决定位数 ” 。

将决定位数的 0/1 值作为索引输入一个阵列, 我们就可以生成一个代码, 无论数据是排序还是未排序, 都同样快速。 我们的代码总是会添加一个值, 但是当决定位数为 0 时, 我们将会添加一个值, 我们并不关心的地方 。 以下是代码 :

// Test
clock_t start = clock();
long long a[] = {0, 0};
long long sum;

for (unsigned i = 0; i < 100000; ++i)
{
    // Primary loop
    for (unsigned c = 0; c < arraySize; ++c)
    {
        int j = (data[c] >> 7);
        a[j] += data[c];
    }
}

double elapsedTime = static_cast<double>(clock() - start) / CLOCKS_PER_SEC;
sum = a[1];

此代码浪费了一半的添加值, 但从未出现分支预测失败 。 随机数据比有实际的如果声明的版本要快得多 。

但在我的测试中,一个清晰的查看表比这个稍快一些, 可能是因为对一个查看表的索引比位变换略快一些。 这显示了我的代码是如何设置和使用搜索表的( 无法想象地称为“ 搜索表 ” ) 。lut代码中“ 查看表格” 。 这是 C++ 代码 :

// Declare and then fill in the lookup table
int lut[256];
for (unsigned c = 0; c < 256; ++c)
    lut[c] = (c >= 128) ? c : 0;

// Use the lookup table after it is built
for (unsigned i = 0; i < 100000; ++i)
{
    // Primary loop
    for (unsigned c = 0; c < arraySize; ++c)
    {
        sum += lut[data[c]];
    }
}

在此情况下, 查看表只有256 字节, 所以它在一个缓存中非常适合, 并且非常快。 如果数据是 24 位值, 而我们只想要其中一半的话, 这个技术就不会有效... 搜索表会太大而不切实际。 另一方面, 我们可以将上面显示的两种技术结合起来: 首先将比特移开, 然后将一个查看表索引。 对于一个仅需要顶端半值的 24 位值, 我们可能会将数据右移12 位值, 并留下一个 12 位值的表格索引。 12 位表指数意味着一个有 4096 个值的表格, 这可能是实用的 。

将技术编成一个阵列,而不是使用if语句,可用于决定使用哪个指针。我看到一个实施二进制树的图书馆,而不是有两个命名指针(指针)。pLeftpRight或什么的)有长2至2的指针阵列,并使用“决定位位”技术来决定应跟随哪一个。例如,而不是:

if (x < node->value)
    node = node->pLeft;
else
    node = node->pRight;

这个图书馆会做一些事情,比如:

i = (x < node->value);
node = node->link[i];

以下是这个代码的链接:红黑树, 永久封存

毫无疑问,我们中有些人会感兴趣的是,如何确定对CPU的分支种植者有问题的代码。cachegrind使用--branch-sim=yes将外环数量减少到10 000个,并编成g++给出这些结果:

分类 :

==32551== Branches:        656,645,130  (  656,609,208 cond +    35,922 ind)
==32551== Mispredicts:         169,556  (      169,095 cond +       461 ind)
==32551== Mispred rate:            0.0% (          0.0%     +       1.2%   )

未分类 :

==32555== Branches:        655,996,082  (  655,960,160 cond +  35,922 ind)
==32555== Mispredicts:     164,073,152  (  164,072,692 cond +     460 ind)
==32555== Mispred rate:           25.0% (         25.0%     +     1.2%   )

向下钻入cg_annotate我们可以看到有关循环:

分类 :

          Bc    Bcm Bi Bim
      10,001      4  0   0      for (unsigned i = 0; i < 10000; ++i)
           .      .  .   .      {
           .      .  .   .          // primary loop
 327,690,000 10,016  0   0          for (unsigned c = 0; c < arraySize; ++c)
           .      .  .   .          {
 327,680,000 10,006  0   0              if (data[c] >= 128)
           0      0  0   0                  sum += data[c];
           .      .  .   .          }
           .      .  .   .      }

未分类 :

          Bc         Bcm Bi Bim
      10,001           4  0   0      for (unsigned i = 0; i < 10000; ++i)
           .           .  .   .      {
           .           .  .   .          // primary loop
 327,690,000      10,038  0   0          for (unsigned c = 0; c < arraySize; ++c)
           .           .  .   .          {
 327,680,000 164,050,007  0   0              if (data[c] >= 128)
           0           0  0   0                  sum += data[c];
           .           .  .   .          }
           .           .  .   .      }

这样可以方便地识别有问题的行 - 在未排序的版本中if (data[c] >= 128)造成164 050 007个错误预测的附带条件的分支(第1行)。Bcm),根据暗礁的分支 - 指示模型, 而它只造成10,006 在分类版本中。


或者,在Linux上,你可以使用性能计数器子系统完成同样的任务,但使用CPU计数器进行本地性能。

perf stat ./sumtest_sorted

分类 :

 Performance counter stats for './sumtest_sorted':

  11808.095776 task-clock                #    0.998 CPUs utilized          
         1,062 context-switches          #    0.090 K/sec                  
            14 CPU-migrations            #    0.001 K/sec                  
           337 page-faults               #    0.029 K/sec                  
26,487,882,764 cycles                    #    2.243 GHz                    
41,025,654,322 instructions              #    1.55  insns per cycle        
 6,558,871,379 branches                  #  555.455 M/sec                  
       567,204 branch-misses             #    0.01% of all branches        

  11.827228330 seconds time elapsed

未分类 :

 Performance counter stats for './sumtest_unsorted':

  28877.954344 task-clock                #    0.998 CPUs utilized          
         2,584 context-switches          #    0.089 K/sec                  
            18 CPU-migrations            #    0.001 K/sec                  
           335 page-faults               #    0.012 K/sec                  
65,076,127,595 cycles                    #    2.253 GHz                    
41,032,528,741 instructions              #    0.63  insns per cycle        
 6,560,579,013 branches                  #  227.183 M/sec                  
 1,646,394,749 branch-misses             #   25.10% of all branches        

  28.935500947 seconds time elapsed

它还可以进行源代码批注,进行拆卸。

perf record -e branch-misses ./sumtest_unsorted
perf annotate -d sumtest_unsorted
 Percent |      Source code & Disassembly of sumtest_unsorted
------------------------------------------------
...
         :                      sum += data[c];
    0.00 :        400a1a:       mov    -0x14(%rbp),%eax
   39.97 :        400a1d:       mov    %eax,%eax
    5.31 :        400a1f:       mov    -0x20040(%rbp,%rax,4),%eax
    4.60 :        400a26:       cltq   
    0.00 :        400a28:       add    %rax,-0x30(%rbp)
...

见见性能辅导以获取更多细节。

分部门预测。

以排序数组数组, 条件data[c] >= 128第一个是false一连串的数值,然后变成true后期所有值。 这很容易预测。 使用一个未排序的阵列, 您支付分支成本 。