我如何在MongoDB中执行SQL Join等效?

例如,假设你有两个集合(用户和评论),我想拉pid=444的所有评论以及每个评论的用户信息。

comments
  { uid:12345, pid:444, comment="blah" }
  { uid:12345, pid:888, comment="asdf" }
  { uid:99999, pid:444, comment="qwer" }

users
  { uid:12345, name:"john" }
  { uid:99999, name:"mia"  }

是否有一种方法可以一次性提取具有特定字段的所有评论(例如. ...find({pid:444}))和与每个评论相关的用户信息?

目前,我首先获取符合条件的注释,然后找出结果集中的所有uid,获取用户对象,并将它们与注释的结果合并。看来我做错了。


当前回答

我认为,如果你需要规范化的数据表-你需要尝试一些其他的数据库解决方案。

但是我在Git上找到了MOngo的解决方案 顺便说一下,在插入代码-它有电影的名称,但没有电影的ID。

问题

你有一个演员集合和他们所做的电影数组。

您希望生成一个Movies集合,每个Movies中都包含一个actor数组。

一些示例数据

 db.actors.insert( { actor: "Richard Gere", movies: ['Pretty Woman', 'Runaway Bride', 'Chicago'] });
 db.actors.insert( { actor: "Julia Roberts", movies: ['Pretty Woman', 'Runaway Bride', 'Erin Brockovich'] });

解决方案

我们需要循环遍历Actor文档中的每个电影,并分别发出每个电影。

这里的问题是在减少阶段。我们不能从reduce阶段发出一个数组,因此必须在返回的“value”文档中构建一个Actors数组。

The code
map = function() {
  for(var i in this.movies){
    key = { movie: this.movies[i] };
    value = { actors: [ this.actor ] };
    emit(key, value);
  }
}

reduce = function(key, values) {
  actor_list = { actors: [] };
  for(var i in values) {
    actor_list.actors = values[i].actors.concat(actor_list.actors);
  }
  return actor_list;
}

注意,actor_list实际上是一个包含数组的javascript对象。还要注意map发出相同的结构。

执行以下命令执行map / reduce,将其输出到“pivot”集合并打印结果:

printjson (db.actors。mapReduce(map, reduce, "pivot")); db.pivot.find () .forEach (printjson);

以下是输出示例,请注意《风月俏佳人》和《逃跑新娘》中都有“理查德·基尔”和“茱莉亚·罗伯茨”。

{ "_id" : { "movie" : "Chicago" }, "value" : { "actors" : [ "Richard Gere" ] } }
{ "_id" : { "movie" : "Erin Brockovich" }, "value" : { "actors" : [ "Julia Roberts" ] } }
{ "_id" : { "movie" : "Pretty Woman" }, "value" : { "actors" : [ "Richard Gere", "Julia Roberts" ] } }
{ "_id" : { "movie" : "Runaway Bride" }, "value" : { "actors" : [ "Richard Gere", "Julia Roberts" ] } }

其他回答

你可以使用Postgres中的mongo_fdw在MongoDB上运行包括join在内的SQL查询。

playORM可以为您使用S-SQL(可伸缩SQL),它只是添加分区,这样您就可以在分区内进行连接。

mongodb官方网站上的这个页面恰好解决了这个问题:

https://mongodb-documentation.readthedocs.io/en/latest/ecosystem/tutorial/model-data-for-ruby-on-rails.html

When we display our list of stories, we'll need to show the name of the user who posted the story. If we were using a relational database, we could perform a join on users and stores, and get all our objects in a single query. But MongoDB does not support joins and so, at times, requires bit of denormalization. Here, this means caching the 'username' attribute. Relational purists may be feeling uneasy already, as if we were violating some universal law. But let’s bear in mind that MongoDB collections are not equivalent to relational tables; each serves a unique design objective. A normalized table provides an atomic, isolated chunk of data. A document, however, more closely represents an object as a whole. In the case of a social news site, it can be argued that a username is intrinsic to the story being posted.

我们可以使用mongodb客户端控制台在几行中使用一个简单的函数合并/连接一个集合中的所有数据,现在我们可以执行所需的查询。 下面是一个完整的例子,

——作者:

db.authors.insert([
    {
        _id: 'a1',
        name: { first: 'orlando', last: 'becerra' },
        age: 27
    },
    {
        _id: 'a2',
        name: { first: 'mayra', last: 'sanchez' },
        age: 21
    }
]);

——类:

db.categories.insert([
    {
        _id: 'c1',
        name: 'sci-fi'
    },
    {
        _id: 'c2',
        name: 'romance'
    }
]);

——书

db.books.insert([
    {
        _id: 'b1',
        name: 'Groovy Book',
        category: 'c1',
        authors: ['a1']
    },
    {
        _id: 'b2',
        name: 'Java Book',
        category: 'c2',
        authors: ['a1','a2']
    },
]);

-图书借阅

db.lendings.insert([
    {
        _id: 'l1',
        book: 'b1',
        date: new Date('01/01/11'),
        lendingBy: 'jose'
    },
    {
        _id: 'l2',
        book: 'b1',
        date: new Date('02/02/12'),
        lendingBy: 'maria'
    }
]);

-神奇之处:

db.books.find().forEach(
    function (newBook) {
        newBook.category = db.categories.findOne( { "_id": newBook.category } );
        newBook.lendings = db.lendings.find( { "book": newBook._id  } ).toArray();
        newBook.authors = db.authors.find( { "_id": { $in: newBook.authors }  } ).toArray();
        db.booksReloaded.insert(newBook);
    }
);

-获取新的收集数据:

db.booksReloaded.find().pretty()

-回复:)

{
    "_id" : "b1",
    "name" : "Groovy Book",
    "category" : {
        "_id" : "c1",
        "name" : "sci-fi"
    },
    "authors" : [
        {
            "_id" : "a1",
            "name" : {
                "first" : "orlando",
                "last" : "becerra"
            },
            "age" : 27
        }
    ],
    "lendings" : [
        {
            "_id" : "l1",
            "book" : "b1",
            "date" : ISODate("2011-01-01T00:00:00Z"),
            "lendingBy" : "jose"
        },
        {
            "_id" : "l2",
            "book" : "b1",
            "date" : ISODate("2012-02-02T00:00:00Z"),
            "lendingBy" : "maria"
        }
    ]
}
{
    "_id" : "b2",
    "name" : "Java Book",
    "category" : {
        "_id" : "c2",
        "name" : "romance"
    },
    "authors" : [
        {
            "_id" : "a1",
            "name" : {
                "first" : "orlando",
                "last" : "becerra"
            },
            "age" : 27
        },
        {
            "_id" : "a2",
            "name" : {
                "first" : "mayra",
                "last" : "sanchez"
            },
            "age" : 21
        }
    ],
    "lendings" : [ ]
}

希望这句话能帮到你。

通过正确组合$lookup, $project和$match,您可以在多个参数上连接多个表。这是因为它们可以被链接多次。

假设我们想做以下(引用)

SELECT S.* FROM LeftTable S
LEFT JOIN RightTable R ON S.ID = R.ID AND S.MID = R.MID  
WHERE R.TIM > 0 AND S.MOB IS NOT NULL

步骤1:链接所有表

您可以根据需要查找任意数量的表。

$lookup -查询中的每个表一个

$unwind -正确地反规格化数据,否则它将被包装在数组中

Python代码. .

db.LeftTable.aggregate([
                        # connect all tables

                        {"$lookup": {
                          "from": "RightTable",
                          "localField": "ID",
                          "foreignField": "ID",
                          "as": "R"
                        }},
                        {"$unwind": "R"}
                   
                        ])

步骤2:定义所有条件

$project:在这里定义所有的条件语句,加上所有你想选择的变量。

Python代码. .

db.LeftTable.aggregate([
                        # connect all tables

                        {"$lookup": {
                          "from": "RightTable",
                          "localField": "ID",
                          "foreignField": "ID",
                          "as": "R"
                        }},
                        {"$unwind": "R"},

                        # define conditionals + variables

                        {"$project": {
                          "midEq": {"$eq": ["$MID", "$R.MID"]},
                          "ID": 1, "MOB": 1, "MID": 1
                        }}
                        ])

第三步:连接所有的条件句

$match -使用OR或AND等连接所有条件可以有很多个。

$project:取消所有的条件

完整的Python代码。

db.LeftTable.aggregate([
                        # connect all tables

                        {"$lookup": {
                          "from": "RightTable",
                          "localField": "ID",
                          "foreignField": "ID",
                          "as": "R"
                        }},
                        {"$unwind": "$R"},

                        # define conditionals + variables

                        {"$project": {
                          "midEq": {"$eq": ["$MID", "$R.MID"]},
                          "ID": 1, "MOB": 1, "MID": 1
                        }},

                        # join all conditionals

                        {"$match": {
                          "$and": [
                            {"R.TIM": {"$gt": 0}}, 
                            {"MOB": {"$exists": True}},
                            {"midEq": {"$eq": True}}
                        ]}},

                        # undefine conditionals

                        {"$project": {
                          "midEq": 0
                        }}

                        ])

几乎任何表、条件和连接的组合都可以用这种方式完成。