我使用sklearn和有一个问题的亲和传播。我已经建立了一个输入矩阵,我一直得到以下错误。

ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

我已经跑了

np.isnan(mat.any()) #and gets False
np.isfinite(mat.all()) #and gets True

我试着用

mat[np.isfinite(mat) == True] = 0

去除掉无限值,但这也没用。 我要怎么做才能去掉矩阵中的无穷大值,这样我就可以使用亲和传播算法了?

我使用anaconda和python 2.7.9。


当前回答

如果您碰巧使用“kc_house_data.csv”数据集(一些评论者和许多数据科学新手似乎使用这个数据集,因为它出现在许多流行的课程材料中),则该数据是错误的,并且是错误的真正来源。

为了解决这个问题,从2022年开始:

删除csv文件中的最后一行(空) 有两行包含一个空数据值"x,x,,x,x" -要修复它,不要删除逗号,而是添加一个随机整数值,如2000,因此它看起来像"x,x,2000,x,x"

不要忘记在项目中保存和重新加载。

所有其他答案都是有帮助和正确的,但在这种情况下不是:

如果你使用kc_house_data.csv,你需要修复文件中的数据,没有其他帮助,空数据字段将随机转移其他数据,并产生难以追踪到源的奇怪错误!

其他回答

在我的例子中,算法要求数据在(0,1)之间不包含。我非常残酷的解决方案是在所有期望值中添加一个小随机数:

y_train = pd.DataFrame(y_train).applymap(lambda x: x + np.random.rand()/100000.0)["col_name"]
y_train[y_train >= 1] = 0.999999

而y_train在[0,1]的范围内。

这当然不适合所有的情况,因为你会弄乱你的输入数据,但如果你有稀疏的数据,只需要一个快速的预测,这是一个解决方案

在大多数情况下,消除无限和空值可以解决这个问题。

去掉无穷值。

df.replace([np.inf, -np.inf], np.nan, inplace=True)

以您喜欢的方式摆脱空值,特定的值,如999,平均值,或创建自己的函数来输入缺失的值

df.fillna(999, inplace=True)

移除所有无限值:

(并替换为该列的min或Max)

import numpy as np

# generate example matrix
matrix = np.random.rand(5,5)
matrix[0,:] = np.inf
matrix[2,:] = -np.inf
>>> matrix
array([[       inf,        inf,        inf,        inf,        inf],
       [0.87362809, 0.28321499, 0.7427659 , 0.37570528, 0.35783064],
       [      -inf,       -inf,       -inf,       -inf,       -inf],
       [0.72877665, 0.06580068, 0.95222639, 0.00833664, 0.68779902],
       [0.90272002, 0.37357483, 0.92952479, 0.072105  , 0.20837798]])

# find min and max values for each column, ignoring nan, -inf, and inf
mins = [np.nanmin(matrix[:, i][matrix[:, i] != -np.inf]) for i in range(matrix.shape[1])]
maxs = [np.nanmax(matrix[:, i][matrix[:, i] != np.inf]) for i in range(matrix.shape[1])]

# go through matrix one column at a time and replace  + and -infinity 
# with the max or min for that column
for i in range(matrix.shape[1]):
    matrix[:, i][matrix[:, i] == -np.inf] = mins[i]
    matrix[:, i][matrix[:, i] == np.inf] = maxs[i]

>>> matrix
array([[0.90272002, 0.37357483, 0.95222639, 0.37570528, 0.68779902],
       [0.87362809, 0.28321499, 0.7427659 , 0.37570528, 0.35783064],
       [0.72877665, 0.06580068, 0.7427659 , 0.00833664, 0.20837798],
       [0.72877665, 0.06580068, 0.95222639, 0.00833664, 0.68779902],
       [0.90272002, 0.37357483, 0.92952479, 0.072105  , 0.20837798]])

如果您正在运行一个估计器,可能是您的学习率太高了。我意外地将错误的数组传递给了网格搜索,最终训练的学习率为500,我可以看到这导致了训练过程中的问题。

基本上,不仅你的输入必须全部有效,中间数据也必须有效。

这是它失败的检查:

https://github.com/scikit-learn/scikit-learn/blob/0.17.X/sklearn/utils/validation.py#L51

def _assert_all_finite(X):
    """Like assert_all_finite, but only for ndarray."""
    X = np.asanyarray(X)
    # First try an O(n) time, O(1) space solution for the common case that
    # everything is finite; fall back to O(n) space np.isfinite to prevent
    # false positives from overflow in sum method.
    if (X.dtype.char in np.typecodes['AllFloat'] and not np.isfinite(X.sum())
            and not np.isfinite(X).all()):
        raise ValueError("Input contains NaN, infinity"
                         " or a value too large for %r." % X.dtype)

所以确保你的输入中有非NaN值。所有这些值实际上都是浮点值。这些值也不应该是Inf。