我使用sklearn和有一个问题的亲和传播。我已经建立了一个输入矩阵,我一直得到以下错误。

ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

我已经跑了

np.isnan(mat.any()) #and gets False
np.isfinite(mat.all()) #and gets True

我试着用

mat[np.isfinite(mat) == True] = 0

去除掉无限值,但这也没用。 我要怎么做才能去掉矩阵中的无穷大值,这样我就可以使用亲和传播算法了?

我使用anaconda和python 2.7.9。


当前回答

移除所有无限值:

(并替换为该列的min或Max)

import numpy as np

# generate example matrix
matrix = np.random.rand(5,5)
matrix[0,:] = np.inf
matrix[2,:] = -np.inf
>>> matrix
array([[       inf,        inf,        inf,        inf,        inf],
       [0.87362809, 0.28321499, 0.7427659 , 0.37570528, 0.35783064],
       [      -inf,       -inf,       -inf,       -inf,       -inf],
       [0.72877665, 0.06580068, 0.95222639, 0.00833664, 0.68779902],
       [0.90272002, 0.37357483, 0.92952479, 0.072105  , 0.20837798]])

# find min and max values for each column, ignoring nan, -inf, and inf
mins = [np.nanmin(matrix[:, i][matrix[:, i] != -np.inf]) for i in range(matrix.shape[1])]
maxs = [np.nanmax(matrix[:, i][matrix[:, i] != np.inf]) for i in range(matrix.shape[1])]

# go through matrix one column at a time and replace  + and -infinity 
# with the max or min for that column
for i in range(matrix.shape[1]):
    matrix[:, i][matrix[:, i] == -np.inf] = mins[i]
    matrix[:, i][matrix[:, i] == np.inf] = maxs[i]

>>> matrix
array([[0.90272002, 0.37357483, 0.95222639, 0.37570528, 0.68779902],
       [0.87362809, 0.28321499, 0.7427659 , 0.37570528, 0.35783064],
       [0.72877665, 0.06580068, 0.7427659 , 0.00833664, 0.20837798],
       [0.72877665, 0.06580068, 0.95222639, 0.00833664, 0.68779902],
       [0.90272002, 0.37357483, 0.92952479, 0.072105  , 0.20837798]])

其他回答

这可能发生在scikit内部,这取决于您正在做什么。我建议阅读您正在使用的函数的文档。你可能会使用一个,例如,你的矩阵是正定的,不满足那个条件。

编辑:我怎么能错过呢?

np.isnan(mat.any()) #and gets False
np.isfinite(mat.all()) #and gets True

显然是错误的。正确的是:

np.any(np.isnan(mat))

and

np.all(np.isfinite(mat))

您想要检查是否有任何元素是NaN,而不是任何函数的返回值是否为数字…

在python 3的这个版本中:

/opt/anaconda3/bin/python --version
Python 3.6.0 :: Anaconda 4.3.0 (64-bit)

查看错误的详细信息,我发现导致失败的代码行:

/opt/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py in _assert_all_finite(X)
     56             and not np.isfinite(X).all()):
     57         raise ValueError("Input contains NaN, infinity"
---> 58                          " or a value too large for %r." % X.dtype)
     59 
     60 

ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

由此,我能够提取正确的方法来测试我的数据所发生的事情,使用由错误消息给出的失败的相同测试:

然后,通过一个快速而肮脏的循环,我能够发现我的数据确实包含nan:

print(p[:,0].shape)
index = 0
for i in p[:,0]:
    if not np.isfinite(i):
        print(index, i)
    index +=1

(367340,)
4454 nan
6940 nan
10868 nan
12753 nan
14855 nan
15678 nan
24954 nan
30251 nan
31108 nan
51455 nan
59055 nan
...

现在我要做的就是去掉这些下标处的值。

在大多数情况下,消除无限和空值可以解决这个问题。

去掉无穷值。

df.replace([np.inf, -np.inf], np.nan, inplace=True)

以您喜欢的方式摆脱空值,特定的值,如999,平均值,或创建自己的函数来输入缺失的值

df.fillna(999, inplace=True)

注意:此解决方案仅适用于有意在数据集中保留NaN条目的情况。

这个错误发生在我使用一些scikit-learn功能时(在我的情况下:GridSearchCV)。在底层,我使用了一个xgboost XGBClassifier,它可以优雅地处理NaN数据。然而,GridSearchCV使用sklearn.utils.validation模块,通过调用_assert_all_finite函数强制缺少输入数据中的缺失数据。这最终导致了一个错误:

ValueError: Input contains NaN, infinity or a value too large for dtype('float64')

旁注:_assert_all_finite接受allow_nan参数,如果设置为True,则不会引起问题。但是,scikit-learn API不允许我们控制这个参数。

解决方案

我的解决方案是使用patch模块静默_assert_all_finite函数,这样它就不会引发ValueError。下面是一个片段

import sklearn
with mock.patch("sklearn.utils.validation._assert_all_finite"):
    # your code that raises ValueError

这将用一个虚拟模拟函数替换_assert_all_finite,因此它不会被执行。

请注意,补丁不是一个推荐的做法,可能会导致不可预知的行为!


编辑: 这个Pull Request应该可以解决这个问题(尽管截至2022年1月修复程序还没有发布)

我有同样的错误,在我的情况下,X和y是数据帧,所以我必须先将它们转换为矩阵:

X = X.values.astype(np.float)
y = y.values.astype(np.float)

编辑:最初建议的X.as_matrix()已弃用