我使用sklearn和有一个问题的亲和传播。我已经建立了一个输入矩阵,我一直得到以下错误。

ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

我已经跑了

np.isnan(mat.any()) #and gets False
np.isfinite(mat.all()) #and gets True

我试着用

mat[np.isfinite(mat) == True] = 0

去除掉无限值,但这也没用。 我要怎么做才能去掉矩阵中的无穷大值,这样我就可以使用亲和传播算法了?

我使用anaconda和python 2.7.9。


当前回答

移除所有无限值:

(并替换为该列的min或Max)

import numpy as np

# generate example matrix
matrix = np.random.rand(5,5)
matrix[0,:] = np.inf
matrix[2,:] = -np.inf
>>> matrix
array([[       inf,        inf,        inf,        inf,        inf],
       [0.87362809, 0.28321499, 0.7427659 , 0.37570528, 0.35783064],
       [      -inf,       -inf,       -inf,       -inf,       -inf],
       [0.72877665, 0.06580068, 0.95222639, 0.00833664, 0.68779902],
       [0.90272002, 0.37357483, 0.92952479, 0.072105  , 0.20837798]])

# find min and max values for each column, ignoring nan, -inf, and inf
mins = [np.nanmin(matrix[:, i][matrix[:, i] != -np.inf]) for i in range(matrix.shape[1])]
maxs = [np.nanmax(matrix[:, i][matrix[:, i] != np.inf]) for i in range(matrix.shape[1])]

# go through matrix one column at a time and replace  + and -infinity 
# with the max or min for that column
for i in range(matrix.shape[1]):
    matrix[:, i][matrix[:, i] == -np.inf] = mins[i]
    matrix[:, i][matrix[:, i] == np.inf] = maxs[i]

>>> matrix
array([[0.90272002, 0.37357483, 0.95222639, 0.37570528, 0.68779902],
       [0.87362809, 0.28321499, 0.7427659 , 0.37570528, 0.35783064],
       [0.72877665, 0.06580068, 0.7427659 , 0.00833664, 0.20837798],
       [0.72877665, 0.06580068, 0.95222639, 0.00833664, 0.68779902],
       [0.90272002, 0.37357483, 0.92952479, 0.072105  , 0.20837798]])

其他回答

我想为numpy提出一个适合我的解决方案。这条线

from numpy import inf
inputArray[inputArray == inf] = np.finfo(np.float64).max

将numpy数组的所有无限值替换为最大的float64数。

在我的例子中,问题是许多scikit函数返回numpy数组,这些数组没有pandas索引。因此,当我使用那些numpy数组来构建新的dataframe时,有一个索引不匹配,然后我尝试将它们与原始数据混合。

当我使用sklearn与熊猫时,我得到了同样的错误消息。我的解决方案是在运行任何sklearn代码之前重置我的dataframe df的索引:

df = df.reset_index()

在删除df中的一些条目时,我多次遇到这个问题,例如

df = df[df.label=='desired_one']

这是它失败的检查:

https://github.com/scikit-learn/scikit-learn/blob/0.17.X/sklearn/utils/validation.py#L51

def _assert_all_finite(X):
    """Like assert_all_finite, but only for ndarray."""
    X = np.asanyarray(X)
    # First try an O(n) time, O(1) space solution for the common case that
    # everything is finite; fall back to O(n) space np.isfinite to prevent
    # false positives from overflow in sum method.
    if (X.dtype.char in np.typecodes['AllFloat'] and not np.isfinite(X.sum())
            and not np.isfinite(X).all()):
        raise ValueError("Input contains NaN, infinity"
                         " or a value too large for %r." % X.dtype)

所以确保你的输入中有非NaN值。所有这些值实际上都是浮点值。这些值也不应该是Inf。

我有错误后,试图选择一个子集的行:

df = df.reindex(index=my_index)

结果是my_index包含df中不包含的值。索引,所以reindex函数插入一些新行,并用nan填充它们。