我使用sklearn和有一个问题的亲和传播。我已经建立了一个输入矩阵,我一直得到以下错误。

ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

我已经跑了

np.isnan(mat.any()) #and gets False
np.isfinite(mat.all()) #and gets True

我试着用

mat[np.isfinite(mat) == True] = 0

去除掉无限值,但这也没用。 我要怎么做才能去掉矩阵中的无穷大值,这样我就可以使用亲和传播算法了?

我使用anaconda和python 2.7.9。


当前回答

当我使用sklearn与熊猫时,我得到了同样的错误消息。我的解决方案是在运行任何sklearn代码之前重置我的dataframe df的索引:

df = df.reset_index()

在删除df中的一些条目时,我多次遇到这个问题,例如

df = df[df.label=='desired_one']

其他回答

我得到了同样的错误。它适用于df。fillna(-99999, inplace=True),然后再做任何替换,替换等

我有同样的错误,在我的情况下,X和y是数据帧,所以我必须先将它们转换为矩阵:

X = X.values.astype(np.float)
y = y.values.astype(np.float)

编辑:最初建议的X.as_matrix()已弃用

在我的例子中,算法要求数据在(0,1)之间不包含。我非常残酷的解决方案是在所有期望值中添加一个小随机数:

y_train = pd.DataFrame(y_train).applymap(lambda x: x + np.random.rand()/100000.0)["col_name"]
y_train[y_train >= 1] = 0.999999

而y_train在[0,1]的范围内。

这当然不适合所有的情况,因为你会弄乱你的输入数据,但如果你有稀疏的数据,只需要一个快速的预测,这是一个解决方案

如果您正在运行一个估计器,可能是您的学习率太高了。我意外地将错误的数组传递给了网格搜索,最终训练的学习率为500,我可以看到这导致了训练过程中的问题。

基本上,不仅你的输入必须全部有效,中间数据也必须有效。

dataset = dataset.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

这对我很有效