我使用sklearn和有一个问题的亲和传播。我已经建立了一个输入矩阵,我一直得到以下错误。

ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

我已经跑了

np.isnan(mat.any()) #and gets False
np.isfinite(mat.all()) #and gets True

我试着用

mat[np.isfinite(mat) == True] = 0

去除掉无限值,但这也没用。 我要怎么做才能去掉矩阵中的无穷大值,这样我就可以使用亲和传播算法了?

我使用anaconda和python 2.7.9。


当前回答

当我使用sklearn与熊猫时,我得到了同样的错误消息。我的解决方案是在运行任何sklearn代码之前重置我的dataframe df的索引:

df = df.reset_index()

在删除df中的一些条目时,我多次遇到这个问题,例如

df = df[df.label=='desired_one']

其他回答

这可能发生在scikit内部,这取决于您正在做什么。我建议阅读您正在使用的函数的文档。你可能会使用一个,例如,你的矩阵是正定的,不满足那个条件。

编辑:我怎么能错过呢?

np.isnan(mat.any()) #and gets False
np.isfinite(mat.all()) #and gets True

显然是错误的。正确的是:

np.any(np.isnan(mat))

and

np.all(np.isfinite(mat))

您想要检查是否有任何元素是NaN,而不是任何函数的返回值是否为数字…

这是我的函数(基于此)来清除数据集的nan, Inf和缺失的单元格(用于倾斜的数据集):

import pandas as pd
import numpy as np

def clean_dataset(df):
    assert isinstance(df, pd.DataFrame), "df needs to be a pd.DataFrame"
    df.dropna(inplace=True)
    indices_to_keep = ~df.isin([np.nan, np.inf, -np.inf]).any(axis=1)
    return df[indices_to_keep].astype(np.float64)

当我使用sklearn与熊猫时,我得到了同样的错误消息。我的解决方案是在运行任何sklearn代码之前重置我的dataframe df的索引:

df = df.reset_index()

在删除df中的一些条目时,我多次遇到这个问题,例如

df = df[df.label=='desired_one']

如果您碰巧使用“kc_house_data.csv”数据集(一些评论者和许多数据科学新手似乎使用这个数据集,因为它出现在许多流行的课程材料中),则该数据是错误的,并且是错误的真正来源。

为了解决这个问题,从2022年开始:

删除csv文件中的最后一行(空) 有两行包含一个空数据值"x,x,,x,x" -要修复它,不要删除逗号,而是添加一个随机整数值,如2000,因此它看起来像"x,x,2000,x,x"

不要忘记在项目中保存和重新加载。

所有其他答案都是有帮助和正确的,但在这种情况下不是:

如果你使用kc_house_data.csv,你需要修复文件中的数据,没有其他帮助,空数据字段将随机转移其他数据,并产生难以追踪到源的奇怪错误!

在处理这个问题很长一段时间后,我意识到这是因为在训练集和测试集的分割中,所有数据行的数据列都是相同的。然后在某些算法中进行一些计算可能会导致无穷大的结果。如果您正在使用的数据的关闭行更可能是相似的,那么重新排列数据会有所帮助。这是scikit的一个漏洞。我使用的是0.23.2版本。