我使用sklearn和有一个问题的亲和传播。我已经建立了一个输入矩阵,我一直得到以下错误。

ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

我已经跑了

np.isnan(mat.any()) #and gets False
np.isfinite(mat.all()) #and gets True

我试着用

mat[np.isfinite(mat) == True] = 0

去除掉无限值,但这也没用。 我要怎么做才能去掉矩阵中的无穷大值,这样我就可以使用亲和传播算法了?

我使用anaconda和python 2.7.9。


当前回答

dataset = dataset.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

这对我很有效

其他回答

在我的例子中,算法要求数据在(0,1)之间不包含。我非常残酷的解决方案是在所有期望值中添加一个小随机数:

y_train = pd.DataFrame(y_train).applymap(lambda x: x + np.random.rand()/100000.0)["col_name"]
y_train[y_train >= 1] = 0.999999

而y_train在[0,1]的范围内。

这当然不适合所有的情况,因为你会弄乱你的输入数据,但如果你有稀疏的数据,只需要一个快速的预测,这是一个解决方案

在我的例子中,问题是许多scikit函数返回numpy数组,这些数组没有pandas索引。因此,当我使用那些numpy数组来构建新的dataframe时,有一个索引不匹配,然后我尝试将它们与原始数据混合。

我得到了同样的错误。它适用于df。fillna(-99999, inplace=True),然后再做任何替换,替换等

泡芙! !在我的情况下,问题是关于NaN值…

您可以使用此函数列出具有NaN的列

your_data.isnull().sum()

然后你可以在数据集文件中填充这些NAN值。

下面是如何“将NaN替换为零,将无穷大替换为大的有限数”的代码。

your_data[:] = np.nan_to_num(your_data)

从numpy.nan_to_num

注意:此解决方案仅适用于有意在数据集中保留NaN条目的情况。

这个错误发生在我使用一些scikit-learn功能时(在我的情况下:GridSearchCV)。在底层,我使用了一个xgboost XGBClassifier,它可以优雅地处理NaN数据。然而,GridSearchCV使用sklearn.utils.validation模块,通过调用_assert_all_finite函数强制缺少输入数据中的缺失数据。这最终导致了一个错误:

ValueError: Input contains NaN, infinity or a value too large for dtype('float64')

旁注:_assert_all_finite接受allow_nan参数,如果设置为True,则不会引起问题。但是,scikit-learn API不允许我们控制这个参数。

解决方案

我的解决方案是使用patch模块静默_assert_all_finite函数,这样它就不会引发ValueError。下面是一个片段

import sklearn
with mock.patch("sklearn.utils.validation._assert_all_finite"):
    # your code that raises ValueError

这将用一个虚拟模拟函数替换_assert_all_finite,因此它不会被执行。

请注意,补丁不是一个推荐的做法,可能会导致不可预知的行为!


编辑: 这个Pull Request应该可以解决这个问题(尽管截至2022年1月修复程序还没有发布)