例如,给定列表['one', 'two', 'one'],算法应该返回True,而给定['one', 'two', 'three']则应该返回False。
当前回答
我真的不知道布景的幕后是做什么的,所以我只想让它简单。
def dupes(num_list):
unique = []
dupes = []
for i in num_list:
if i not in unique:
unique.append(i)
else:
dupes.append(i)
if len(dupes) != 0:
return False
else:
return True
其他回答
仅推荐用于短列表:
any(thelist.count(x) > 1 for x in thelist)
不要在一个很长的列表上使用——它所花费的时间与列表中项目数量的平方成正比!
对于具有可哈希项(字符串,数字和c)的较长列表:
def anydup(thelist):
seen = set()
for x in thelist:
if x in seen: return True
seen.add(x)
return False
如果你的项目是不可哈希的(子列表,字典等),它会变得更加复杂,尽管它仍然有可能得到O(N logN),如果它们至少具有可比性。但你需要知道或测试项目的特征(可哈希与否,可比性与否),以获得最佳性能——可哈希对象为O(N),不可哈希对象为O(N log N),否则就会变成O(N平方),没有人能做什么:-(。
另一个解决方案是使用切片,它也适用于字符串和其他可枚举的东西。
def has_duplicates(x):
for idx, item in enumerate(x):
if item in x[(idx + 1):]:
return True
return False
>>> has_duplicates(["a", "b", "c"])
False
>>> has_duplicates(["a", "b", "b", "c"])
True
>>> has_duplicates("abc")
False
>>> has_duplicates("abbc")
True
一个更简单的解决方案如下。只需用pandas . replicated()方法检查True/False,然后取sum。请参阅pandas. series . replicated - pandas 0.24.1文档
import pandas as pd
def has_duplicated(l):
return pd.Series(l).duplicated().sum() > 0
print(has_duplicated(['one', 'two', 'one']))
# True
print(has_duplicated(['one', 'two', 'three']))
# False
这是老问题了,但这里的答案让我找到了一个略有不同的解决方案。如果您准备滥用推导式,您可能会以这种方式短路。
xs = [1, 2, 1]
s = set()
any(x in s or s.add(x) for x in xs)
# You can use a similar approach to actually retrieve the duplicates.
s = set()
duplicates = set(x for x in xs if x in s or s.add(x))
我认为比较这里提出的不同解决方案的时间是有用的。为此,我使用了我自己的库simple_benchmark:
在这种情况下Denis Otkidach的方法是最快的。
一些方法还显示出更陡峭的曲线,这些方法是用元素数量缩放二次的方法(Alex Martellis的第一个解,wjandrea和Xavier Decorets的两个解)。同样重要的是,来自Keiku的熊猫解决方案有一个非常大的常数因子。但对于更大的列表,它几乎赶上了其他的解。
如果副本在第一个位置。这对于查看哪些解决方案短路很有用:
这里有几种方法不会短路:Kaiku、Frank、Xavier_Decoret(第一个解决方案)、Turn、Alex Martelli(第一个解决方案)和Denis Otkidach提出的方法(在无重复情况下最快)。
我在这里包含了我自己库中的一个函数:iteration_utilities。All_distinct,它可以在无重复的情况下与最快的解决方案竞争,并且在开始时有重复的情况下以常数时间执行(尽管不是最快的)。
基准测试代码:
from collections import Counter
from functools import reduce
import pandas as pd
from simple_benchmark import BenchmarkBuilder
from iteration_utilities import all_distinct
b = BenchmarkBuilder()
@b.add_function()
def Keiku(l):
return pd.Series(l).duplicated().sum() > 0
@b.add_function()
def Frank(num_list):
unique = []
dupes = []
for i in num_list:
if i not in unique:
unique.append(i)
else:
dupes.append(i)
if len(dupes) != 0:
return False
else:
return True
@b.add_function()
def wjandrea(iterable):
seen = []
for x in iterable:
if x in seen:
return True
seen.append(x)
return False
@b.add_function()
def user(iterable):
clean_elements_set = set()
clean_elements_set_add = clean_elements_set.add
for possible_duplicate_element in iterable:
if possible_duplicate_element in clean_elements_set:
return True
else:
clean_elements_set_add( possible_duplicate_element )
return False
@b.add_function()
def Turn(l):
return Counter(l).most_common()[0][1] > 1
def getDupes(l):
seen = set()
seen_add = seen.add
for x in l:
if x in seen or seen_add(x):
yield x
@b.add_function()
def F1Rumors(l):
try:
if next(getDupes(l)): return True # Found a dupe
except StopIteration:
pass
return False
def decompose(a_list):
return reduce(
lambda u, o : (u[0].union([o]), u[1].union(u[0].intersection([o]))),
a_list,
(set(), set()))
@b.add_function()
def Xavier_Decoret_1(l):
return not decompose(l)[1]
@b.add_function()
def Xavier_Decoret_2(l):
try:
def func(s, o):
if o in s:
raise Exception
return s.union([o])
reduce(func, l, set())
return True
except:
return False
@b.add_function()
def pyrospade(xs):
s = set()
return any(x in s or s.add(x) for x in xs)
@b.add_function()
def Alex_Martelli_1(thelist):
return any(thelist.count(x) > 1 for x in thelist)
@b.add_function()
def Alex_Martelli_2(thelist):
seen = set()
for x in thelist:
if x in seen: return True
seen.add(x)
return False
@b.add_function()
def Denis_Otkidach(your_list):
return len(your_list) != len(set(your_list))
@b.add_function()
def MSeifert04(l):
return not all_distinct(l)
关于论点:
# No duplicate run
@b.add_arguments('list size')
def arguments():
for exp in range(2, 14):
size = 2**exp
yield size, list(range(size))
# Duplicate at beginning run
@b.add_arguments('list size')
def arguments():
for exp in range(2, 14):
size = 2**exp
yield size, [0, *list(range(size)]
# Running and plotting
r = b.run()
r.plot()
推荐文章
- 有没有办法在python中做HTTP PUT
- “foo Is None”和“foo == None”之间有什么区别吗?
- 类没有对象成员
- Django模型“没有显式声明app_label”
- bash:错误的替换
- 熊猫能自动从CSV文件中读取日期吗?
- 在python中zip的逆函数是什么?
- 有效的方法应用多个过滤器的熊猫数据框架或系列
- 在c#中检查字符串是否只包含数字的最快方法
- 如何检索插入id后插入行在SQLite使用Python?
- 我如何在Django中添加一个CharField占位符?
- 如何在Python中获取当前执行文件的路径?
- 我如何得到“id”后插入到MySQL数据库与Python?
- super()失败,错误:TypeError "参数1必须是类型,而不是classobj"当父不继承对象
- Python内存泄漏