例如,给定列表['one', 'two', 'one'],算法应该返回True,而给定['one', 'two', 'three']则应该返回False。
当前回答
另一个解决方案是使用切片,它也适用于字符串和其他可枚举的东西。
def has_duplicates(x):
for idx, item in enumerate(x):
if item in x[(idx + 1):]:
return True
return False
>>> has_duplicates(["a", "b", "c"])
False
>>> has_duplicates(["a", "b", "b", "c"])
True
>>> has_duplicates("abc")
False
>>> has_duplicates("abbc")
True
其他回答
一个更简单的解决方案如下。只需用pandas . replicated()方法检查True/False,然后取sum。请参阅pandas. series . replicated - pandas 0.24.1文档
import pandas as pd
def has_duplicated(l):
return pd.Series(l).duplicated().sum() > 0
print(has_duplicated(['one', 'two', 'one']))
# True
print(has_duplicated(['one', 'two', 'three']))
# False
如果列表包含不可哈希的项,您可以使用Alex Martelli的解决方案,但使用列表而不是集合,尽管它对于较大的输入较慢:O(N^2)。
def has_duplicates(iterable):
seen = []
for x in iterable:
if x in seen:
return True
seen.append(x)
return False
如果您喜欢函数式编程风格,这里有一个有用的函数,使用doctest自文档和测试代码。
def decompose(a_list):
"""Turns a list into a set of all elements and a set of duplicated elements.
Returns a pair of sets. The first one contains elements
that are found at least once in the list. The second one
contains elements that appear more than once.
>>> decompose([1,2,3,5,3,2,6])
(set([1, 2, 3, 5, 6]), set([2, 3]))
"""
return reduce(
lambda (u, d), o : (u.union([o]), d.union(u.intersection([o]))),
a_list,
(set(), set()))
if __name__ == "__main__":
import doctest
doctest.testmod()
从这里你可以通过检查返回对的第二个元素是否为空来测试唯一性:
def is_set(l):
"""Test if there is no duplicate element in l.
>>> is_set([1,2,3])
True
>>> is_set([1,2,1])
False
>>> is_set([])
True
"""
return not decompose(l)[1]
注意,这并不有效,因为您是显式地构造分解。但是在使用reduce的过程中,你可以得到一些等价的(但效率稍低)答案5:
def is_set(l):
try:
def func(s, o):
if o in s:
raise Exception
return s.union([o])
reduce(func, l, set())
return True
except:
return False
这是老问题了,但这里的答案让我找到了一个略有不同的解决方案。如果您准备滥用推导式,您可能会以这种方式短路。
xs = [1, 2, 1]
s = set()
any(x in s or s.add(x) for x in xs)
# You can use a similar approach to actually retrieve the duplicates.
s = set()
duplicates = set(x for x in xs if x in s or s.add(x))
我发现这是最好的性能,因为当它发现第一个复制时,它会短路操作,那么这个算法的时间和空间复杂度为O(n),其中n是列表的长度:
def has_duplicated_elements(iterable):
""" Given an `iterable`, return True if there are duplicated entries. """
clean_elements_set = set()
clean_elements_set_add = clean_elements_set.add
for possible_duplicate_element in iterable:
if possible_duplicate_element in clean_elements_set:
return True
else:
clean_elements_set_add( possible_duplicate_element )
return False