例如,给定列表['one', 'two', 'one'],算法应该返回True,而给定['one', 'two', 'three']则应该返回False。
当前回答
my_list = ['one', 'two', 'one']
duplicates = []
for value in my_list:
if my_list.count(value) > 1:
if value not in duplicates:
duplicates.append(value)
print(duplicates) //["one"]
其他回答
另一个解决方案是使用切片,它也适用于字符串和其他可枚举的东西。
def has_duplicates(x):
for idx, item in enumerate(x):
if item in x[(idx + 1):]:
return True
return False
>>> has_duplicates(["a", "b", "c"])
False
>>> has_duplicates(["a", "b", "b", "c"])
True
>>> has_duplicates("abc")
False
>>> has_duplicates("abbc")
True
我最近回答了一个相关的问题,使用生成器在一个列表中建立所有的副本。它的优点是,如果只是用来确定“是否有重复”,那么你只需要获取第一项,其余的可以忽略,这是终极捷径。
这是一个有趣的基于集合的方法,我直接改编自moooeeeep:
def getDupes(l):
seen = set()
seen_add = seen.add
for x in l:
if x in seen or seen_add(x):
yield x
因此,完整的dupes列表将是list(getDupes(etc))。为了简单地测试“是否”存在欺骗,它应该被包装如下:
def hasDupes(l):
try:
if getDupes(l).next(): return True # Found a dupe
except StopIteration:
pass
return False
这可以很好地扩展,并且在列表中提供一致的操作时间——我测试了多达1m个条目的列表。如果您对数据有所了解,特别是,被欺骗者可能会在前半段出现,或者其他让您偏离需求的事情,比如需要获得实际的被欺骗者,那么有几个真正的替代dupe定位器可能会表现更好。我推荐的两个是……
简单的基于字典的方法,非常易读:
def getDupes(c):
d = {}
for i in c:
if i in d:
if d[i]:
yield i
d[i] = False
else:
d[i] = True
利用itertools(本质上是一个过滤器/izip/tee)在排序列表上,如果你得到所有的dupes,非常有效,但没有那么快得到第一个:
def getDupes(c):
a, b = itertools.tee(sorted(c))
next(b, None)
r = None
for k, g in itertools.ifilter(lambda x: x[0]==x[1], itertools.izip(a, b)):
if k != r:
yield k
r = k
这些是我为完整的欺骗列表所尝试的方法中表现最好的,第一次欺骗发生在1m元素列表中从开始到中间的任何地方。令人惊讶的是,排序步骤增加的开销很少。你的里程可能会有所不同,但以下是我的具体计时结果:
Finding FIRST duplicate, single dupe places "n" elements in to 1m element array
Test set len change : 50 - . . . . . -- 0.002
Test in dict : 50 - . . . . . -- 0.002
Test in set : 50 - . . . . . -- 0.002
Test sort/adjacent : 50 - . . . . . -- 0.023
Test sort/groupby : 50 - . . . . . -- 0.026
Test sort/zip : 50 - . . . . . -- 1.102
Test sort/izip : 50 - . . . . . -- 0.035
Test sort/tee/izip : 50 - . . . . . -- 0.024
Test moooeeeep : 50 - . . . . . -- 0.001 *
Test iter*/sorted : 50 - . . . . . -- 0.027
Test set len change : 5000 - . . . . . -- 0.017
Test in dict : 5000 - . . . . . -- 0.003 *
Test in set : 5000 - . . . . . -- 0.004
Test sort/adjacent : 5000 - . . . . . -- 0.031
Test sort/groupby : 5000 - . . . . . -- 0.035
Test sort/zip : 5000 - . . . . . -- 1.080
Test sort/izip : 5000 - . . . . . -- 0.043
Test sort/tee/izip : 5000 - . . . . . -- 0.031
Test moooeeeep : 5000 - . . . . . -- 0.003 *
Test iter*/sorted : 5000 - . . . . . -- 0.031
Test set len change : 50000 - . . . . . -- 0.035
Test in dict : 50000 - . . . . . -- 0.023
Test in set : 50000 - . . . . . -- 0.023
Test sort/adjacent : 50000 - . . . . . -- 0.036
Test sort/groupby : 50000 - . . . . . -- 0.134
Test sort/zip : 50000 - . . . . . -- 1.121
Test sort/izip : 50000 - . . . . . -- 0.054
Test sort/tee/izip : 50000 - . . . . . -- 0.045
Test moooeeeep : 50000 - . . . . . -- 0.019 *
Test iter*/sorted : 50000 - . . . . . -- 0.055
Test set len change : 500000 - . . . . . -- 0.249
Test in dict : 500000 - . . . . . -- 0.145
Test in set : 500000 - . . . . . -- 0.165
Test sort/adjacent : 500000 - . . . . . -- 0.139
Test sort/groupby : 500000 - . . . . . -- 1.138
Test sort/zip : 500000 - . . . . . -- 1.159
Test sort/izip : 500000 - . . . . . -- 0.126
Test sort/tee/izip : 500000 - . . . . . -- 0.120 *
Test moooeeeep : 500000 - . . . . . -- 0.131
Test iter*/sorted : 500000 - . . . . . -- 0.157
我使用了pyrospade的方法,因为它很简单,并在一个由不区分大小写的Windows注册表组成的简短列表中对其进行了稍微修改。
如果原始PATH值字符串被分割成单独的路径,所有'null'路径(空的或只有空格的字符串)可以使用以下方法删除:
PATH_nonulls = [s for s in PATH if s.strip()]
def HasDupes(aseq) :
s = set()
return any(((x.lower() in s) or s.add(x.lower())) for x in aseq)
def GetDupes(aseq) :
s = set()
return set(x for x in aseq if ((x.lower() in s) or s.add(x.lower())))
def DelDupes(aseq) :
seen = set()
return [x for x in aseq if (x.lower() not in seen) and (not seen.add(x.lower()))]
原始的PATH有“null”条目和用于测试目的的副本:
[list] Root paths in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment:PATH[list] Root paths in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment
1 C:\Python37\
2
3
4 C:\Python37\Scripts\
5 c:\python37\
6 C:\Program Files\ImageMagick-7.0.8-Q8
7 C:\Program Files (x86)\poppler\bin
8 D:\DATA\Sounds
9 C:\Program Files (x86)\GnuWin32\bin
10 C:\Program Files (x86)\Intel\iCLS Client\
11 C:\Program Files\Intel\iCLS Client\
12 D:\DATA\CCMD\FF
13 D:\DATA\CCMD
14 D:\DATA\UTIL
15 C:\
16 D:\DATA\UHELP
17 %SystemRoot%\system32
18
19
20 D:\DATA\CCMD\FF%SystemRoot%
21 D:\DATA\Sounds
22 %SystemRoot%\System32\Wbem
23 D:\DATA\CCMD\FF
24
25
26 c:\
27 %SYSTEMROOT%\System32\WindowsPowerShell\v1.0\
28
空路径已经被删除,但仍然有重复的路径,例如(1,3)和(13,20):
[list] Null paths removed from HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment:PATH
1 C:\Python37\
2 C:\Python37\Scripts\
3 c:\python37\
4 C:\Program Files\ImageMagick-7.0.8-Q8
5 C:\Program Files (x86)\poppler\bin
6 D:\DATA\Sounds
7 C:\Program Files (x86)\GnuWin32\bin
8 C:\Program Files (x86)\Intel\iCLS Client\
9 C:\Program Files\Intel\iCLS Client\
10 D:\DATA\CCMD\FF
11 D:\DATA\CCMD
12 D:\DATA\UTIL
13 C:\
14 D:\DATA\UHELP
15 %SystemRoot%\system32
16 D:\DATA\CCMD\FF%SystemRoot%
17 D:\DATA\Sounds
18 %SystemRoot%\System32\Wbem
19 D:\DATA\CCMD\FF
20 c:\
21 %SYSTEMROOT%\System32\WindowsPowerShell\v1.0\
最后,被愚弄的人被删除了:
[list] Massaged path list from in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment:PATH
1 C:\Python37\
2 C:\Python37\Scripts\
3 C:\Program Files\ImageMagick-7.0.8-Q8
4 C:\Program Files (x86)\poppler\bin
5 D:\DATA\Sounds
6 C:\Program Files (x86)\GnuWin32\bin
7 C:\Program Files (x86)\Intel\iCLS Client\
8 C:\Program Files\Intel\iCLS Client\
9 D:\DATA\CCMD\FF
10 D:\DATA\CCMD
11 D:\DATA\UTIL
12 C:\
13 D:\DATA\UHELP
14 %SystemRoot%\system32
15 D:\DATA\CCMD\FF%SystemRoot%
16 %SystemRoot%\System32\Wbem
17 %SYSTEMROOT%\System32\WindowsPowerShell\v1.0\
仅推荐用于短列表:
any(thelist.count(x) > 1 for x in thelist)
不要在一个很长的列表上使用——它所花费的时间与列表中项目数量的平方成正比!
对于具有可哈希项(字符串,数字和c)的较长列表:
def anydup(thelist):
seen = set()
for x in thelist:
if x in seen: return True
seen.add(x)
return False
如果你的项目是不可哈希的(子列表,字典等),它会变得更加复杂,尽管它仍然有可能得到O(N logN),如果它们至少具有可比性。但你需要知道或测试项目的特征(可哈希与否,可比性与否),以获得最佳性能——可哈希对象为O(N),不可哈希对象为O(N log N),否则就会变成O(N平方),没有人能做什么:-(。
如果列表包含不可哈希的项,您可以使用Alex Martelli的解决方案,但使用列表而不是集合,尽管它对于较大的输入较慢:O(N^2)。
def has_duplicates(iterable):
seen = []
for x in iterable:
if x in seen:
return True
seen.append(x)
return False
推荐文章
- 在SQL Server中查找重复的行
- 我如何分割一个字符串由一个多字符分隔符在c# ?
- 如何删除Python中的前导空白?
- python中的assertEquals和assertEqual
- 如何保持Python打印不添加换行符或空格?
- 为什么Python的无穷散列中有π的数字?
- Python 3.7数据类中的类继承
- 如何在PyTorch中初始化权重?
- 计数唯一的值在一列熊猫数据框架像在Qlik?
- 如何在Typescript中解析JSON字符串
- 使用Pandas将列转换为行
- 从matplotlib中的颜色映射中获取单个颜色
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML