在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?


当前回答

在监督学习中,我们知道输入和输出应该是什么。例如,给定一组汽车。我们得找出哪些是红的,哪些是蓝的。

然而,无监督学习是指我们必须在很少或没有任何关于输出应该如何的想法的情况下找到答案。例如,学习者可以建立一个模型,根据面部模式和单词(如“你在笑什么?”)的相关性来检测人们何时在微笑。

其他回答

监督学习可以根据训练过程中的学习,将一个新项目标记为训练过的标签之一。您需要提供大量的训练数据集、验证数据集和测试数据集。如果你提供数字的像素图像向量以及带有标签的训练数据,那么它就可以识别数字。

无监督学习不需要训练数据集。在无监督学习中,它可以根据输入向量的差异将项目分组到不同的簇中。如果你提供像素的数字图像向量,并要求它分为10个类别,它可能会这样做。但它知道如何标注,因为你没有提供培训标签。

监督式学习

训练数据包括输入向量的示例及其相应的目标向量的应用被称为监督学习问题。

无监督学习

在其他模式识别问题中,训练数据由一组输入向量x组成,没有任何对应的目标值。这种无监督学习问题的目标可能是在数据中发现相似的例子组,在这里它被称为聚类

模式识别和机器学习(Bishop, 2006)

监督式学习

无监督学习

例子:

监督式学习:

一袋苹果 一个橙色的袋子 =>构建模型 一个混合了苹果和橘子的袋子。 请分类

无监督学习:

一个混合了苹果和橘子的袋子。 =>构建模型 另一个喜忧参半的情况 请分类

Supervised Learning is basically where you have input variables(x) and output variable(y) and use algorithm to learn the mapping function from input to the output. The reason why we called this as supervised is because algorithm learns from the training dataset, the algorithm iteratively makes predictions on the training data. Supervised have two types-Classification and Regression. Classification is when the output variable is category like yes/no, true/false. Regression is when the output is real values like height of person, Temperature etc.

联合国监督学习是指我们只有输入数据(X),没有输出变量。 这被称为无监督学习,因为与上面的监督学习不同,它没有正确的答案,也没有老师。算法由它们自己的设计来发现和呈现数据中有趣的结构。

无监督学习的类型有聚类和关联。

监督学习:你有标记的数据,必须从中学习。例如,房屋数据和价格,然后学会预测价格

无监督学习:你必须找到趋势,然后预测,没有预先给出的标签。 例句:班里有不同的人,然后又来了一个新同学,那么这个新同学属于哪个组呢?