我试图从一个csv文件创建一个字典。csv文件的第一列包含唯一的键,第二列包含值。csv文件的每一行都表示字典中的唯一键、值对。我尝试使用csv文件。DictReader和csv。类的DictWriter,但我只知道如何为每一行生成一个新字典。我想要一本字典。这是我试图使用的代码:

import csv

with open('coors.csv', mode='r') as infile:
    reader = csv.reader(infile)
    with open('coors_new.csv', mode='w') as outfile:
    writer = csv.writer(outfile)
    for rows in reader:
        k = rows[0]
        v = rows[1]
        mydict = {k:v for k, v in rows}
    print(mydict)

当我运行上面的代码时,我得到一个ValueError:太多的值来解包(预期2)。我如何从csv文件创建一个字典?谢谢。


当前回答

我相信您正在寻找的语法如下:

import csv

with open('coors.csv', mode='r') as infile:
    reader = csv.reader(infile)
    with open('coors_new.csv', mode='w') as outfile:
        writer = csv.writer(outfile)
        mydict = {rows[0]:rows[1] for rows in reader}

另外,对于python <= 2.7.1,你需要:

mydict = dict((rows[0],rows[1]) for rows in reader)

其他回答

假设你有一个这样结构的CSV:

"a","b"
1,2
3,4
5,6

你希望输出是:

[{'a': '1', ' "b"': '2'}, {'a': '3', ' "b"': '4'}, {'a': '5', ' "b"': '6'}]

zip函数(还没有提到)非常简单,而且非常有用。

def read_csv(filename):
    with open(filename) as f:
        file_data=csv.reader(f)
        headers=next(file_data)
        return [dict(zip(headers,i)) for i in file_data]

如果你更喜欢熊猫,它也可以很好地做到这一点:

import pandas as pd
def read_csv(filename):
    return pd.read_csv(filename).to_dict('records')

你可以用这个,它很酷:

import dataconverters.commas as commas
filename = 'test.csv'
with open(filename) as f:
      records, metadata = commas.parse(f)
      for row in records:
            print 'this is row in dictionary:'+rowenter code here

对于简单的csv文件,例如以下文件

id,col1,col2,col3
row1,r1c1,r1c2,r1c3
row2,r2c1,r2c2,r2c3
row3,r3c1,r3c2,r3c3
row4,r4c1,r4c2,r4c3

您可以仅使用内置函数将其转换为Python字典

with open(csv_file) as f:
    csv_list = [[val.strip() for val in r.split(",")] for r in f.readlines()]

(_, *header), *data = csv_list
csv_dict = {}
for row in data:
    key, *values = row   
    csv_dict[key] = {key: value for key, value in zip(header, values)}

这将产生以下字典

{'row1': {'col1': 'r1c1', 'col2': 'r1c2', 'col3': 'r1c3'},
 'row2': {'col1': 'r2c1', 'col2': 'r2c2', 'col3': 'r2c3'},
 'row3': {'col1': 'r3c1', 'col2': 'r3c2', 'col3': 'r3c3'},
 'row4': {'col1': 'r4c1', 'col2': 'r4c2', 'col3': 'r4c3'}}

注意:Python字典有唯一的键,所以如果你的csv文件有重复的id,你应该把每一行都附加到一个列表中。

for row in data:
    key, *values = row

    if key not in csv_dict:
            csv_dict[key] = []

    csv_dict[key].append({key: value for key, value in zip(header, values)})

一行程序解决方案

import pandas as pd

dict = {row[0] : row[1] for _, row in pd.read_csv("file.csv").iterrows()}

尝试使用defaultdict和DictReader。

import csv
from collections import defaultdict
my_dict = defaultdict(list)

with open('filename.csv', 'r') as csv_file:
    csv_reader = csv.DictReader(csv_file)
    for line in csv_reader:
        for key, value in line.items():
            my_dict[key].append(value)

它返回:

{'key1':[value_1, value_2, value_3], 'key2': [value_a, value_b, value_c], 'Key3':[value_x, Value_y, Value_z]}