我如何找到所有行的熊猫DataFrame有最大的值为计数列,分组后['Sp','Mt']列?

例1:下面的DataFrame,我用['Sp','Mt']分组:

   Sp   Mt Value   count
0  MM1  S1   a     **3**
1  MM1  S1   n       2
2  MM1  S3   cb    **5**
3  MM2  S3   mk    **8**
4  MM2  S4   bg    **10**
5  MM2  S4   dgd     1
6  MM4  S2   rd      2
7  MM4  S2   cb      2
8  MM4  S2   uyi   **7**

预期输出是得到每组中数量最大的结果行,如下所示:

0  MM1  S1   a      **3**
2  MM1  S3   cb     **5**
3  MM2  S3   mk     **8**
4  MM2  S4   bg     **10** 
8  MM4  S2   uyi    **7**

例2:这个DataFrame,我用['Sp','Mt']分组:

   Sp   Mt   Value  count
4  MM2  S4   bg     10
5  MM2  S4   dgd    1
6  MM4  S2   rd     2
7  MM4  S2   cb     8
8  MM4  S2   uyi    8

预期输出是获得每组中count等于max的所有行,如下所示:

   Sp   Mt   Value  count
4  MM2  S4   bg     10
7  MM4  S2   cb     8
8  MM4  S2   uyi    8

当前回答

意识到“应用”“nmaximum”到groupby对象同样有效:

额外的优势-也可以获取前n个值,如果需要:

In [85]: import pandas as pd

In [86]: df = pd.DataFrame({
    ...: 'sp' : ['MM1', 'MM1', 'MM1', 'MM2', 'MM2', 'MM2', 'MM4', 'MM4','MM4'],
    ...: 'mt' : ['S1', 'S1', 'S3', 'S3', 'S4', 'S4', 'S2', 'S2', 'S2'],
    ...: 'val' : ['a', 'n', 'cb', 'mk', 'bg', 'dgb', 'rd', 'cb', 'uyi'],
    ...: 'count' : [3,2,5,8,10,1,2,2,7]
    ...: })

## Apply nlargest(1) to find the max val df, and nlargest(n) gives top n values for df:
In [87]: df.groupby(["sp", "mt"]).apply(lambda x: x.nlargest(1, "count")).reset_index(drop=True)
Out[87]:
   count  mt   sp  val
0      3  S1  MM1    a
1      5  S3  MM1   cb
2      8  S3  MM2   mk
3     10  S4  MM2   bg
4      7  S2  MM4  uyi

其他回答

df.loc [df.groupby(“太”)(“计数”).idxmax ())

如果df索引不是唯一的,你可能需要这个步骤df.reset_index(inplace=True)。

如果你对你的DataFrame进行排序,排序将被保留在groupby中。然后,只需获取第一个或最后一个元素并重置索引。

df = pd.DataFrame({
    'sp' : ['MM1', 'MM1', 'MM1', 'MM2', 'MM2', 'MM2', 'MM4', 'MM4','MM4'],
    'mt' : ['S1', 'S1', 'S3', 'S3', 'S4', 'S4', 'S2', 'S2', 'S2'],
    'val' : ['a', 'n', 'cb', 'mk', 'bg', 'dgb', 'rd', 'cb', 'uyi'],
    'count' : [3,2,5,8,10,1,2,2,7]
})

df.sort_values("count", ascending=False).groupby(["sp", "mt"]).first().reset_index()

简单的解决方案是应用idxmax()函数来获取具有最大值的行索引。 这将过滤掉组中值最大的所有行。

In [365]: import pandas as pd

In [366]: df = pd.DataFrame({
'sp' : ['MM1', 'MM1', 'MM1', 'MM2', 'MM2', 'MM2', 'MM4', 'MM4','MM4'],
'mt' : ['S1', 'S1', 'S3', 'S3', 'S4', 'S4', 'S2', 'S2', 'S2'],
'val' : ['a', 'n', 'cb', 'mk', 'bg', 'dgb', 'rd', 'cb', 'uyi'],
'count' : [3,2,5,8,10,1,2,2,7]
})

In [367]: df                                                                                                       
Out[367]: 
   count  mt   sp  val
0      3  S1  MM1    a
1      2  S1  MM1    n
2      5  S3  MM1   cb
3      8  S3  MM2   mk
4     10  S4  MM2   bg
5      1  S4  MM2  dgb
6      2  S2  MM4   rd
7      2  S2  MM4   cb
8      7  S2  MM4  uyi


### Apply idxmax() and use .loc() on dataframe to filter the rows with max values:
In [368]: df.loc[df.groupby(["sp", "mt"])["count"].idxmax()]                                                       
Out[368]: 
   count  mt   sp  val
0      3  S1  MM1    a
2      5  S3  MM1   cb
3      8  S3  MM2   mk
4     10  S4  MM2   bg
8      7  S2  MM4  uyi

### Just to show what values are returned by .idxmax() above:
In [369]: df.groupby(["sp", "mt"])["count"].idxmax().values                                                        
Out[369]: array([0, 2, 3, 4, 8])
In [1]: df
Out[1]:
    Sp  Mt Value  count
0  MM1  S1     a      3
1  MM1  S1     n      2
2  MM1  S3    cb      5
3  MM2  S3    mk      8
4  MM2  S4    bg     10
5  MM2  S4   dgd      1
6  MM4  S2    rd      2
7  MM4  S2    cb      2
8  MM4  S2   uyi      7

In [2]: df.groupby(['Mt'], sort=False)['count'].max()
Out[2]:
Mt
S1     3
S3     8
S4    10
S2     7
Name: count

要获得原始DF的指数,您可以这样做:

In [3]: idx = df.groupby(['Mt'])['count'].transform(max) == df['count']

In [4]: df[idx]
Out[4]:
    Sp  Mt Value  count
0  MM1  S1     a      3
3  MM2  S3    mk      8
4  MM2  S4    bg     10
8  MM4  S2   uyi      7

注意,如果每个组有多个最大值,则将返回所有最大值。

更新

碰碰运气,这就是OP要求的:

In [5]: df['count_max'] = df.groupby(['Mt'])['count'].transform(max)

In [6]: df
Out[6]:
    Sp  Mt Value  count  count_max
0  MM1  S1     a      3          3
1  MM1  S1     n      2          3
2  MM1  S3    cb      5          8
3  MM2  S3    mk      8          8
4  MM2  S4    bg     10         10
5  MM2  S4   dgd      1         10
6  MM4  S2    rd      2          7
7  MM4  S2    cb      2          7
8  MM4  S2   uyi      7          7

在尝试了Zelazny在一个相对较大的DataFrame(约400k行)上建议的解决方案后,我发现它非常慢。下面是我发现的一个替代方案,它在我的数据集上运行速度快了几个数量级。

df = pd.DataFrame({
    'sp' : ['MM1', 'MM1', 'MM1', 'MM2', 'MM2', 'MM2', 'MM4', 'MM4', 'MM4'],
    'mt' : ['S1', 'S1', 'S3', 'S3', 'S4', 'S4', 'S2', 'S2', 'S2'],
    'val' : ['a', 'n', 'cb', 'mk', 'bg', 'dgb', 'rd', 'cb', 'uyi'],
    'count' : [3,2,5,8,10,1,2,2,7]
    })

df_grouped = df.groupby(['sp', 'mt']).agg({'count':'max'})

df_grouped = df_grouped.reset_index()

df_grouped = df_grouped.rename(columns={'count':'count_max'})

df = pd.merge(df, df_grouped, how='left', on=['sp', 'mt'])

df = df[df['count'] == df['count_max']]