我如何找到所有行的熊猫DataFrame有最大的值为计数列,分组后['Sp','Mt']列?
例1:下面的DataFrame,我用['Sp','Mt']分组:
Sp Mt Value count
0 MM1 S1 a **3**
1 MM1 S1 n 2
2 MM1 S3 cb **5**
3 MM2 S3 mk **8**
4 MM2 S4 bg **10**
5 MM2 S4 dgd 1
6 MM4 S2 rd 2
7 MM4 S2 cb 2
8 MM4 S2 uyi **7**
预期输出是得到每组中数量最大的结果行,如下所示:
0 MM1 S1 a **3**
2 MM1 S3 cb **5**
3 MM2 S3 mk **8**
4 MM2 S4 bg **10**
8 MM4 S2 uyi **7**
例2:这个DataFrame,我用['Sp','Mt']分组:
Sp Mt Value count
4 MM2 S4 bg 10
5 MM2 S4 dgd 1
6 MM4 S2 rd 2
7 MM4 S2 cb 8
8 MM4 S2 uyi 8
预期输出是获得每组中count等于max的所有行,如下所示:
Sp Mt Value count
4 MM2 S4 bg 10
7 MM4 S2 cb 8
8 MM4 S2 uyi 8
您可能不需要执行groupby(),而是同时使用sort_values + drop_duplicate
df.sort_values('count').drop_duplicates(['Sp', 'Mt'], keep='last')
Out[190]:
Sp Mt Value count
0 MM1 S1 a 3
2 MM1 S3 cb 5
8 MM4 S2 uyi 7
3 MM2 S3 mk 8
4 MM2 S4 bg 10
使用tail也是同样的逻辑
df.sort_values('count').groupby(['Sp', 'Mt']).tail(1)
Out[52]:
Sp Mt Value count
0 MM1 S1 a 3
2 MM1 S3 cb 5
8 MM4 S2 uyi 7
3 MM2 S3 mk 8
4 MM2 S4 bg 10
综上所述,有很多方法,但哪一种更快呢?
import pandas as pd
import numpy as np
import time
df = pd.DataFrame(np.random.randint(1,10,size=(1000000, 2)), columns=list('AB'))
start_time = time.time()
df1idx = df.groupby(['A'])['B'].transform(max) == df['B']
df1 = df[df1idx]
print("---1 ) %s seconds ---" % (time.time() - start_time))
start_time = time.time()
df2 = df.sort_values('B').groupby(['A']).tail(1)
print("---2 ) %s seconds ---" % (time.time() - start_time))
start_time = time.time()
df3 = df.sort_values('B').drop_duplicates(['A'],keep='last')
print("---3 ) %s seconds ---" % (time.time() - start_time))
start_time = time.time()
df3b = df.sort_values('B', ascending=False).drop_duplicates(['A'])
print("---3b) %s seconds ---" % (time.time() - start_time))
start_time = time.time()
df4 = df[df['B'] == df.groupby(['A'])['B'].transform(max)]
print("---4 ) %s seconds ---" % (time.time() - start_time))
start_time = time.time()
d = df.groupby('A')['B'].nlargest(1)
df5 = df.iloc[[i[1] for i in d.index], :]
print("---5 ) %s seconds ---" % (time.time() - start_time))
获胜者是……
——1)0.03337574005126953秒——
——2)0.1346898078918457秒——
——3)0.10243558883666992秒——
——3b) 0.1004343032836914秒——
——4)0.028397560119628906秒——
——5)0.07552886009216309秒——
尝试在groupby对象上使用" nmaximum "。使用nmaximum的优点是它返回“第n个最大项”所在行的索引。
注意:我们对索引的第二个(1)元素进行切片,因为在这种情况下,我们的索引由元组(例如。(s1, 0))。
df = pd.DataFrame({
'sp' : ['MM1', 'MM1', 'MM1', 'MM2', 'MM2', 'MM2', 'MM4', 'MM4','MM4'],
'mt' : ['S1', 'S1', 'S3', 'S3', 'S4', 'S4', 'S2', 'S2', 'S2'],
'val' : ['a', 'n', 'cb', 'mk', 'bg', 'dgb', 'rd', 'cb', 'uyi'],
'count' : [3,2,5,8,10,1,2,2,7]
})
d = df.groupby('mt')['count'].nlargest(1) # pass 1 since we want the max
df.iloc[[i[1] for i in d.index], :] # pass the index of d as list comprehension
In [1]: df
Out[1]:
Sp Mt Value count
0 MM1 S1 a 3
1 MM1 S1 n 2
2 MM1 S3 cb 5
3 MM2 S3 mk 8
4 MM2 S4 bg 10
5 MM2 S4 dgd 1
6 MM4 S2 rd 2
7 MM4 S2 cb 2
8 MM4 S2 uyi 7
In [2]: df.groupby(['Mt'], sort=False)['count'].max()
Out[2]:
Mt
S1 3
S3 8
S4 10
S2 7
Name: count
要获得原始DF的指数,您可以这样做:
In [3]: idx = df.groupby(['Mt'])['count'].transform(max) == df['count']
In [4]: df[idx]
Out[4]:
Sp Mt Value count
0 MM1 S1 a 3
3 MM2 S3 mk 8
4 MM2 S4 bg 10
8 MM4 S2 uyi 7
注意,如果每个组有多个最大值,则将返回所有最大值。
更新
碰碰运气,这就是OP要求的:
In [5]: df['count_max'] = df.groupby(['Mt'])['count'].transform(max)
In [6]: df
Out[6]:
Sp Mt Value count count_max
0 MM1 S1 a 3 3
1 MM1 S1 n 2 3
2 MM1 S3 cb 5 8
3 MM2 S3 mk 8 8
4 MM2 S4 bg 10 10
5 MM2 S4 dgd 1 10
6 MM4 S2 rd 2 7
7 MM4 S2 cb 2 7
8 MM4 S2 uyi 7 7