我如何找到所有行的熊猫DataFrame有最大的值为计数列,分组后['Sp','Mt']列?

例1:下面的DataFrame,我用['Sp','Mt']分组:

   Sp   Mt Value   count
0  MM1  S1   a     **3**
1  MM1  S1   n       2
2  MM1  S3   cb    **5**
3  MM2  S3   mk    **8**
4  MM2  S4   bg    **10**
5  MM2  S4   dgd     1
6  MM4  S2   rd      2
7  MM4  S2   cb      2
8  MM4  S2   uyi   **7**

预期输出是得到每组中数量最大的结果行,如下所示:

0  MM1  S1   a      **3**
2  MM1  S3   cb     **5**
3  MM2  S3   mk     **8**
4  MM2  S4   bg     **10** 
8  MM4  S2   uyi    **7**

例2:这个DataFrame,我用['Sp','Mt']分组:

   Sp   Mt   Value  count
4  MM2  S4   bg     10
5  MM2  S4   dgd    1
6  MM4  S2   rd     2
7  MM4  S2   cb     8
8  MM4  S2   uyi    8

预期输出是获得每组中count等于max的所有行,如下所示:

   Sp   Mt   Value  count
4  MM2  S4   bg     10
7  MM4  S2   cb     8
8  MM4  S2   uyi    8

当前回答

df = pd.DataFrame({
'sp' : ['MM1', 'MM1', 'MM1', 'MM2', 'MM2', 'MM2', 'MM4', 'MM4','MM4'],
'mt' : ['S1', 'S1', 'S3', 'S3', 'S4', 'S4', 'S2', 'S2', 'S2'],
'val' : ['a', 'n', 'cb', 'mk', 'bg', 'dgb', 'rd', 'cb', 'uyi'],
'count' : [3,2,5,8,10,1,2,2,7]
})

df.groupby(['sp', 'mt']).apply(lambda grp: grp.nlargest(1, 'count'))

其他回答

在尝试了Zelazny在一个相对较大的DataFrame(约400k行)上建议的解决方案后,我发现它非常慢。下面是我发现的一个替代方案,它在我的数据集上运行速度快了几个数量级。

df = pd.DataFrame({
    'sp' : ['MM1', 'MM1', 'MM1', 'MM2', 'MM2', 'MM2', 'MM4', 'MM4', 'MM4'],
    'mt' : ['S1', 'S1', 'S3', 'S3', 'S4', 'S4', 'S2', 'S2', 'S2'],
    'val' : ['a', 'n', 'cb', 'mk', 'bg', 'dgb', 'rd', 'cb', 'uyi'],
    'count' : [3,2,5,8,10,1,2,2,7]
    })

df_grouped = df.groupby(['sp', 'mt']).agg({'count':'max'})

df_grouped = df_grouped.reset_index()

df_grouped = df_grouped.rename(columns={'count':'count_max'})

df = pd.merge(df, df_grouped, how='left', on=['sp', 'mt'])

df = df[df['count'] == df['count_max']]

如果你对你的DataFrame进行排序,排序将被保留在groupby中。然后,只需获取第一个或最后一个元素并重置索引。

df = pd.DataFrame({
    'sp' : ['MM1', 'MM1', 'MM1', 'MM2', 'MM2', 'MM2', 'MM4', 'MM4','MM4'],
    'mt' : ['S1', 'S1', 'S3', 'S3', 'S4', 'S4', 'S2', 'S2', 'S2'],
    'val' : ['a', 'n', 'cb', 'mk', 'bg', 'dgb', 'rd', 'cb', 'uyi'],
    'count' : [3,2,5,8,10,1,2,2,7]
})

df.sort_values("count", ascending=False).groupby(["sp", "mt"]).first().reset_index()

使用groupby和idxmax方法:

将col date转换为datetime: df(“日期”)= pd.to_datetime (df(“日期”)) 在groupyby ad_id之后,获取列日期的Max索引: idx = df.groupby(=“ad_id”)(“日期”).idxmax () 获取所需数据: df_max = df.loc (idx,)

[54]:

ad_id  price       date
7     22      2 2018-06-11
6     23      2 2018-06-22
2     24      2 2018-06-30
3     28      5 2018-06-22

尝试在groupby对象上使用" nmaximum "。使用nmaximum的优点是它返回“第n个最大项”所在行的索引。 注意:我们对索引的第二个(1)元素进行切片,因为在这种情况下,我们的索引由元组(例如。(s1, 0))。

df = pd.DataFrame({
'sp' : ['MM1', 'MM1', 'MM1', 'MM2', 'MM2', 'MM2', 'MM4', 'MM4','MM4'],
'mt' : ['S1', 'S1', 'S3', 'S3', 'S4', 'S4', 'S2', 'S2', 'S2'],
'val' : ['a', 'n', 'cb', 'mk', 'bg', 'dgb', 'rd', 'cb', 'uyi'],
'count' : [3,2,5,8,10,1,2,2,7]
})

d = df.groupby('mt')['count'].nlargest(1) # pass 1 since we want the max

df.iloc[[i[1] for i in d.index], :] # pass the index of d as list comprehension

df.loc [df.groupby(“太”)(“计数”).idxmax ())

如果df索引不是唯一的,你可能需要这个步骤df.reset_index(inplace=True)。