如果你有一个圆心(center_x, center_y)和半径为半径的圆,如何测试一个坐标为(x, y)的给定点是否在圆内?
当前回答
这与Jason Punyon提到的解决方案相同,但它包含伪代码示例和更多细节。写完这篇文章后,我看到了他的回答,但我不想删除我的。
我认为最容易理解的方法是先计算圆心到点的距离。我会用这个公式:
d = sqrt((circle_x - x)^2 + (circle_y - y)^2)
然后,简单地比较公式的结果,距离(d),与半径。如果距离(d)小于或等于半径(r),则该点在圆内(如果d和r相等,则在圆的边缘)。
下面是一个伪代码示例,可以很容易地转换为任何编程语言:
function is_in_circle(circle_x, circle_y, r, x, y)
{
d = sqrt((circle_x - x)^2 + (circle_y - y)^2);
return d <= r;
}
其中circle_x和circle_y是圆的中心坐标,r是圆的半径,x和y是点的坐标。
其他回答
我在c#中的回答是一个完整的剪切和粘贴(未优化)解决方案:
public static bool PointIsWithinCircle(double circleRadius, double circleCenterPointX, double circleCenterPointY, double pointToCheckX, double pointToCheckY)
{
return (Math.Pow(pointToCheckX - circleCenterPointX, 2) + Math.Pow(pointToCheckY - circleCenterPointY, 2)) < (Math.Pow(circleRadius, 2));
}
用法:
if (!PointIsWithinCircle(3, 3, 3, .5, .5)) { }
进入3D世界,如果你想检查一个3D点是否在单位球面上,你最终会做类似的事情。在2D中工作所需要的就是使用2D矢量运算。
public static bool Intersects(Vector3 point, Vector3 center, float radius)
{
Vector3 displacementToCenter = point - center;
float radiusSqr = radius * radius;
bool intersects = displacementToCenter.magnitude < radiusSqr;
return intersects;
}
我使用下面的代码为初学者像我一样:)。
公共类incirkel {
public static void main(String[] args) {
int x;
int y;
int middelx;
int middely;
int straal; {
// Adjust the coordinates of x and y
x = -1;
y = -2;
// Adjust the coordinates of the circle
middelx = 9;
middely = 9;
straal = 10;
{
//When x,y is within the circle the message below will be printed
if ((((middelx - x) * (middelx - x))
+ ((middely - y) * (middely - y)))
< (straal * straal)) {
System.out.println("coordinaten x,y vallen binnen cirkel");
//When x,y is NOT within the circle the error message below will be printed
} else {
System.err.println("x,y coordinaten vallen helaas buiten de cirkel");
}
}
}
}}
如前所述,为了显示点是否在圆中,我们可以使用下面的方法
if ((x-center_x)^2 + (y - center_y)^2 < radius^2) {
in.circle <- "True"
} else {
in.circle <- "False"
}
要用图形表示,我们可以使用:
plot(x, y, asp = 1, xlim = c(-1, 1), ylim = c(-1, 1), col = ifelse((x-center_x)^2 + (y - center_y)^2 < radius^2,'green','red'))
draw.circle(0, 0, 1, nv = 1000, border = NULL, col = NA, lty = 1, lwd = 1)
如上所述,使用欧几里得距离。
from math import hypot
def in_radius(c_x, c_y, r, x, y):
return math.hypot(c_x-x, c_y-y) <= r