如果你有一个圆心(center_x, center_y)和半径为半径的圆,如何测试一个坐标为(x, y)的给定点是否在圆内?


当前回答

如前所述,为了显示点是否在圆中,我们可以使用下面的方法

if ((x-center_x)^2 + (y - center_y)^2 < radius^2) {
    in.circle <- "True"
} else {
    in.circle <- "False"
}

要用图形表示,我们可以使用:

plot(x, y, asp = 1, xlim = c(-1, 1), ylim = c(-1, 1), col = ifelse((x-center_x)^2 + (y - center_y)^2 < radius^2,'green','red'))
draw.circle(0, 0, 1, nv = 1000, border = NULL, col = NA, lty = 1, lwd = 1)

其他回答

计算距离

D = Math.Sqrt(Math.Pow(center_x - x, 2) + Math.Pow(center_y - y, 2))
return D <= radius

这是用c#写的……转换为python中使用…

求圆心到所给点之间的距离。如果它们之间的距离小于半径,则该点在圆内。 如果它们之间的距离等于圆的半径,那么这个点就在圆的周长上。 如果距离大于半径,则该点在圆外。

int d = r^2 - ((center_x-x)^2 + (center_y-y)^2);

if(d>0)
  print("inside");
else if(d==0)
  print("on the circumference");
else
  print("outside");

如前所述,为了显示点是否在圆中,我们可以使用下面的方法

if ((x-center_x)^2 + (y - center_y)^2 < radius^2) {
    in.circle <- "True"
} else {
    in.circle <- "False"
}

要用图形表示,我们可以使用:

plot(x, y, asp = 1, xlim = c(-1, 1), ylim = c(-1, 1), col = ifelse((x-center_x)^2 + (y - center_y)^2 < radius^2,'green','red'))
draw.circle(0, 0, 1, nv = 1000, border = NULL, col = NA, lty = 1, lwd = 1)

iOS 15,接受的答案写在Swift 5.5

func isInRectangle(center: CGPoint, radius: Double, point: CGPoint) -> Bool
{
    return point.x >= center.x - radius && point.x <= center.x + radius &&
    point.y >= center.y - radius && point.y <= center.y + radius
}

//test if coordinate (x, y) is within a radius from coordinate (center_x, center_y)
func isPointInCircle(center: CGPoint,
                     radius:Double, point: CGPoint) -> Bool
{
    if(isInRectangle(center: center, radius: radius, point: point))
    {
        var dx:Double = center.x - point.x
        var dy:Double = center.y - point.y
        dx *= dx
        dy *= dy
        let distanceSquared:Double = dx + dy
        let radiusSquared:Double = radius * radius
        return distanceSquared <= radiusSquared
    }
    return false
}

下面是解决这个问题的简单java代码:

以及它背后的数学:https://math.stackexchange.com/questions/198764/how-to-know-if-a-point-is-inside-a-circle

boolean insideCircle(int[] point, int[] center, int radius) {
    return (float)Math.sqrt((int)Math.pow(point[0]-center[0],2)+(int)Math.pow(point[1]-center[1],2)) <= radius;
}