我有一个数据框架形式的相当大的数据集,我想知道我如何能够将数据框架分成两个随机样本(80%和20%)进行训练和测试。

谢谢!


当前回答

您可以使用df.as_matrix()函数并创建Numpy-array并传递它。

Y = df.pop()
X = df.as_matrix()
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2)
model.fit(x_train, y_train)
model.test(x_test)

其他回答

可以使用~(波浪符)排除使用df.sample()采样的行,让pandas单独处理索引的采样和过滤,以获得两个集。

train_df = df.sample(frac=0.8, random_state=100)
test_df = df[~df.index.isin(train_df.index)]

示例方法选择数据的一部分,您可以先通过传递种子值来打乱数据。

train = df.sample(frac=0.8, random_state=42)

对于测试集,您可以删除通过train DF索引的行,然后重置新DF的索引。

test = df.drop(train_data.index).reset_index(drop=True)

这是我在需要分割数据帧时所写的。我考虑过使用上面安迪的方法,但不喜欢我不能精确地控制数据集的大小(例如,有时是79,有时是81,等等)。

def make_sets(data_df, test_portion):
    import random as rnd

    tot_ix = range(len(data_df))
    test_ix = sort(rnd.sample(tot_ix, int(test_portion * len(data_df))))
    train_ix = list(set(tot_ix) ^ set(test_ix))

    test_df = data_df.ix[test_ix]
    train_df = data_df.ix[train_ix]

    return train_df, test_df


train_df, test_df = make_sets(data_df, 0.2)
test_df.head()

你也可以考虑分层划分为训练集和测试集。设定划分也随机生成训练集和测试集,但保留了原始的类比例。这使得训练集和测试集更好地反映原始数据集的属性。

import numpy as np  

def get_train_test_inds(y,train_proportion=0.7):
    '''Generates indices, making random stratified split into training set and testing sets
    with proportions train_proportion and (1-train_proportion) of initial sample.
    y is any iterable indicating classes of each observation in the sample.
    Initial proportions of classes inside training and 
    testing sets are preserved (stratified sampling).
    '''

    y=np.array(y)
    train_inds = np.zeros(len(y),dtype=bool)
    test_inds = np.zeros(len(y),dtype=bool)
    values = np.unique(y)
    for value in values:
        value_inds = np.nonzero(y==value)[0]
        np.random.shuffle(value_inds)
        n = int(train_proportion*len(value_inds))

        train_inds[value_inds[:n]]=True
        test_inds[value_inds[n:]]=True

    return train_inds,test_inds

df[train_inds]和df[test_inds]为您提供原始DataFrame df的训练和测试集。

我会用K-fold交叉验证。 它已被证明比train_test_split提供更好的结果。下面是一篇关于如何在sklearn中应用它的文章,来自文档本身:https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html