我有一个数据框架形式的相当大的数据集,我想知道我如何能够将数据框架分成两个随机样本(80%和20%)进行训练和测试。
谢谢!
我有一个数据框架形式的相当大的数据集,我想知道我如何能够将数据框架分成两个随机样本(80%和20%)进行训练和测试。
谢谢!
当前回答
如果你需要根据你的数据集中的lables列来分割你的数据,你可以使用这个:
def split_to_train_test(df, label_column, train_frac=0.8):
train_df, test_df = pd.DataFrame(), pd.DataFrame()
labels = df[label_column].unique()
for lbl in labels:
lbl_df = df[df[label_column] == lbl]
lbl_train_df = lbl_df.sample(frac=train_frac)
lbl_test_df = lbl_df.drop(lbl_train_df.index)
print '\n%s:\n---------\ntotal:%d\ntrain_df:%d\ntest_df:%d' % (lbl, len(lbl_df), len(lbl_train_df), len(lbl_test_df))
train_df = train_df.append(lbl_train_df)
test_df = test_df.append(lbl_test_df)
return train_df, test_df
并使用它:
train, test = split_to_train_test(data, 'class', 0.7)
如果你想控制分割随机性或使用一些全局随机种子,你也可以传递random_state。
其他回答
我将使用scikit-learn自己的training_test_split,并从索引生成它
from sklearn.model_selection import train_test_split
y = df.pop('output')
X = df
X_train,X_test,y_train,y_test = train_test_split(X.index,y,test_size=0.2)
X.iloc[X_train] # return dataframe train
不需要转换为numpy。只要用pandas df来做拆分,它就会返回一个pandas df。
from sklearn.model_selection import train_test_split
train, test = train_test_split(df, test_size=0.2)
如果你想把x和y分开
X_train, X_test, y_train, y_test = train_test_split(df[list_of_x_cols], df[y_col],test_size=0.2)
如果要分割整个df
X, y = df[list_of_x_cols], df[y_col]
你可以使用下面的代码来创建测试和训练样本:
from sklearn.model_selection import train_test_split
trainingSet, testSet = train_test_split(df, test_size=0.2)
测试大小可以根据您想要放入测试和训练数据集中的数据百分比而变化。
您需要将pandas数据帧转换为numpy数组,然后将numpy数组转换回数据帧
import pandas as pd
df=pd.read_csv('/content/drive/My Drive/snippet.csv', sep='\t')
from sklearn.model_selection import train_test_split
train, test = train_test_split(df, test_size=0.2)
train1=pd.DataFrame(train)
test1=pd.DataFrame(test)
train1.to_csv('/content/drive/My Drive/train.csv',sep="\t",header=None, encoding='utf-8', index = False)
test1.to_csv('/content/drive/My Drive/test.csv',sep="\t",header=None, encoding='utf-8', index = False)
可以使用~(波浪符)排除使用df.sample()采样的行,让pandas单独处理索引的采样和过滤,以获得两个集。
train_df = df.sample(frac=0.8, random_state=100)
test_df = df[~df.index.isin(train_df.index)]