我有一个数据框架形式的相当大的数据集,我想知道我如何能够将数据框架分成两个随机样本(80%和20%)进行训练和测试。
谢谢!
我有一个数据框架形式的相当大的数据集,我想知道我如何能够将数据框架分成两个随机样本(80%和20%)进行训练和测试。
谢谢!
当前回答
在我的例子中,我想用特定的数字分割训练、测试和开发中的数据帧。我在这里分享我的解决方案
首先,为数据帧分配一个唯一的id(如果已经不存在的话)
import uuid
df['id'] = [uuid.uuid4() for i in range(len(df))]
以下是我的分割数字:
train = 120765
test = 4134
dev = 2816
分裂函数
def df_split(df, n):
first = df.sample(n)
second = df[~df.id.isin(list(first['id']))]
first.reset_index(drop=True, inplace = True)
second.reset_index(drop=True, inplace = True)
return first, second
现在分成培训,测试,开发
train, test = df_split(df, 120765)
test, dev = df_split(test, 4134)
其他回答
我会使用numpy的randn:
In [11]: df = pd.DataFrame(np.random.randn(100, 2))
In [12]: msk = np.random.rand(len(df)) < 0.8
In [13]: train = df[msk]
In [14]: test = df[~msk]
为了证明这是有效的:
In [15]: len(test)
Out[15]: 21
In [16]: len(train)
Out[16]: 79
import pandas as pd
from sklearn.model_selection import train_test_split
datafile_name = 'path_to_data_file'
data = pd.read_csv(datafile_name)
target_attribute = data['column_name']
X_train, X_test, y_train, y_test = train_test_split(data, target_attribute, test_size=0.8)
要分成两个以上的类,如训练、测试和验证,可以这样做:
probs = np.random.rand(len(df))
training_mask = probs < 0.7
test_mask = (probs>=0.7) & (probs < 0.85)
validatoin_mask = probs >= 0.85
df_training = df[training_mask]
df_test = df[test_mask]
df_validation = df[validatoin_mask]
这将把大约70%的数据用于训练,15%用于测试,15%用于验证。
我会用K-fold交叉验证。 它已被证明比train_test_split提供更好的结果。下面是一篇关于如何在sklearn中应用它的文章,来自文档本身:https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
不需要转换为numpy。只要用pandas df来做拆分,它就会返回一个pandas df。
from sklearn.model_selection import train_test_split
train, test = train_test_split(df, test_size=0.2)
如果你想把x和y分开
X_train, X_test, y_train, y_test = train_test_split(df[list_of_x_cols], df[y_col],test_size=0.2)
如果要分割整个df
X, y = df[list_of_x_cols], df[y_col]