我试图使用熊猫操作.csv文件,但我得到这个错误:

pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12

我试着读过熊猫的文件,但一无所获。

我的代码很简单:

path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)

我该如何解决这个问题?我应该使用csv模块还是其他语言?

文件来自晨星公司


当前回答

在我的例子中,问题是熊猫版本,所以熊猫1.3.5就像一个魅力。

其他回答

我自己也遇到过几次这样的问题。几乎每次,原因都是我试图打开的文件一开始就不是一个正确保存的CSV。这里的“适当”是指每一行都有相同数量的分隔符或列。

通常发生这种情况是因为我在Excel中打开了CSV,然后不恰当地保存了它。尽管文件扩展名仍然是. CSV,但纯CSV格式已经被改变了。

任何以pandas to_csv保存的文件都将被正确格式化,不应该有这个问题。但如果你用另一个程序打开它,它可能会改变结构。

希望这能有所帮助。

在处理类似的解析错误时,我发现另一种方法很有用,它使用CSV模块将数据重新路由到pandas df。例如:

import csv
import pandas as pd
path = 'C:/FileLocation/'
file = 'filename.csv'
f = open(path+file,'rt')
reader = csv.reader(f)

#once contents are available, I then put them in a list
csv_list = []
for l in reader:
    csv_list.append(l)
f.close()
#now pandas has no problem getting into a df
df = pd.DataFrame(csv_list)

我发现CSV模块对于格式不佳的逗号分隔的文件更加健壮,因此已经成功地用这种方法解决了诸如此类的问题。

我从同事那里收到了.csv文件,当我试图使用pd.read_csv()读取csv文件时,我收到了类似的错误。显然,它试图使用第一行来为数据框架生成列,但许多行包含的列比第一行所暗示的要多。我最终通过简单地打开文件并重新保存为.csv并再次使用pd.read_csv()来解决这个问题。

我有同样的问题,当read_csv: ParserError:错误标记数据。 我只是把旧的csv文件保存为一个新的csv文件。问题解决了!

使用 熊猫。read_csv (CSVFILENAME,头= None, 9 = " ")

当试图从链接中读取CSV数据时

http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data

我将该网站的数据复制到我的csv文件中。它有额外的空格,所以使用sep =', '并且它工作:)