我试图使用熊猫操作.csv文件,但我得到这个错误:

pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12

我试着读过熊猫的文件,但一无所获。

我的代码很简单:

path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)

我该如何解决这个问题?我应该使用csv模块还是其他语言?

文件来自晨星公司


当前回答

我遇到了这个问题,我试图在不传递列名的情况下读取CSV。

df = pd.read_csv(filename, header=None)

我事先在一个列表中指定了列名,然后将它们传递到名称中,它立即解决了这个问题。如果您没有设置列名,您可以创建与数据中可能存在的最大列数量一样多的占位符名称。

col_names = ["col1", "col2", "col3", ...]
df = pd.read_csv(filename, names=col_names)

其他回答

问题出在分隔符上。找出在数据中使用的分隔符类型,并如下所示指定它:

data = pd.read_csv('some_data.csv', sep='\t')

标记数据错误。C错误:第3行有2个字段,见12

这个错误给出了解决问题“Expected 2 fields in line 3, saw 12”的线索,saw 12表示第二行长度为12,第一行长度为2。

当您有如下所示的数据时,如果您跳过行,那么大部分数据将被跳过

data = """1,2,3
1,2,3,4
1,2,3,4,5
1,2
1,2,3,4"""

如果您不想跳过任何行,请执行以下操作

#First lets find the maximum column for all the rows
with open("file_name.csv", 'r') as temp_f:
    # get No of columns in each line
    col_count = [ len(l.split(",")) for l in temp_f.readlines() ]

### Generate column names  (names will be 0, 1, 2, ..., maximum columns - 1)
column_names = [i for i in range(max(col_count))] 

import pandas as pd
# inside range set the maximum value you can see in "Expected 4 fields in line 2, saw 8"
# here will be 8 
data = pd.read_csv("file_name.csv",header = None,names=column_names )

使用range而不是手动设置名称,因为当您有很多列时,这样做会很麻烦。

此外,如果需要使用均匀的数据长度,可以将NaN值填充为0。如。对于聚类(k-means)

new_data = data.fillna(0)

解析器被文件头弄糊涂了。它读取第一行并从该行推断列数。但是前两行并不能代表文件中的实际数据。

用data = pd试试。read_csv(路径,skiprows = 2)

我相信解决方案,

,engine='python'
, error_bad_lines = False

如果它是虚拟列并且你想要删除它,这将是很好的。 在我的例子中,第二行确实有更多的列,我希望这些列被积分,并且有列数= MAX(列)。

请参考下面我无法阅读的解决方案:

try:
    df_data = pd.read_csv(PATH, header = bl_header, sep = str_sep)
except pd.errors.ParserError as err:
    str_find = 'saw '
    int_position = int(str(err).find(str_find)) + len(str_find)
    str_nbCol = str(err)[int_position:]
    l_col = range(int(str_nbCol))
    df_data = pd.read_csv(PATH, header = bl_header, sep = str_sep, names = l_col)

你可以试试;

data = pd.read_csv('file1.csv', sep='\t')