我试图使用熊猫操作.csv文件,但我得到这个错误:
pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12
我试着读过熊猫的文件,但一无所获。
我的代码很简单:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
我该如何解决这个问题?我应该使用csv模块还是其他语言?
文件来自晨星公司
我试图使用熊猫操作.csv文件,但我得到这个错误:
pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12
我试着读过熊猫的文件,但一无所获。
我的代码很简单:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
我该如何解决这个问题?我应该使用csv模块还是其他语言?
文件来自晨星公司
当前回答
我遇到了这个问题,我试图在不传递列名的情况下读取CSV。
df = pd.read_csv(filename, header=None)
我事先在一个列表中指定了列名,然后将它们传递到名称中,它立即解决了这个问题。如果您没有设置列名,您可以创建与数据中可能存在的最大列数量一样多的占位符名称。
col_names = ["col1", "col2", "col3", ...]
df = pd.read_csv(filename, names=col_names)
其他回答
在我的例子中,这是因为csv文件的第一行和最后两行格式与文件的中间内容不同。
因此,我所做的是将csv文件作为字符串打开,解析字符串的内容,然后使用read_csv获取数据帧。
import io
import pandas as pd
file = open(f'{file_path}/{file_name}', 'r')
content = file.read()
# change new line character from '\r\n' to '\n'
lines = content.replace('\r', '').split('\n')
# Remove the first and last 2 lines of the file
# StringIO can be considered as a file stored in memory
df = pd.read_csv(StringIO("\n".join(lines[2:-2])), header=None)
你可以试试;
data = pd.read_csv('file1.csv', sep='\t')
对于那些在linux操作系统上使用Python 3有类似问题的人。
pandas.errors.ParserError: Error tokenizing data. C error: Calling
read(nbytes) on source failed. Try engine='python'.
试一试:
df.read_csv('file.csv', encoding='utf8', engine='python')
我有一个已有行号的数据集,我使用index_col:
pd.read_csv('train.csv', index_col=0)
以下是对我有用的(我张贴了这个答案,因为我在谷歌协作笔记本中特别遇到了这个问题):
df = pd.read_csv("/path/foo.csv", delimiter=';', skiprows=0, low_memory=False)