我试图使用熊猫操作.csv文件,但我得到这个错误:

pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12

我试着读过熊猫的文件,但一无所获。

我的代码很简单:

path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)

我该如何解决这个问题?我应该使用csv模块还是其他语言?

文件来自晨星公司


当前回答

我遇到了这个问题,我试图在不传递列名的情况下读取CSV。

df = pd.read_csv(filename, header=None)

我事先在一个列表中指定了列名,然后将它们传递到名称中,它立即解决了这个问题。如果您没有设置列名,您可以创建与数据中可能存在的最大列数量一样多的占位符名称。

col_names = ["col1", "col2", "col3", ...]
df = pd.read_csv(filename, names=col_names)

其他回答

我遇到了这个问题,我试图在不传递列名的情况下读取CSV。

df = pd.read_csv(filename, header=None)

我事先在一个列表中指定了列名,然后将它们传递到名称中,它立即解决了这个问题。如果您没有设置列名,您可以创建与数据中可能存在的最大列数量一样多的占位符名称。

col_names = ["col1", "col2", "col3", ...]
df = pd.read_csv(filename, names=col_names)

你可以使用:

pd.read_csv("mycsv.csv", delimiter=";")

熊猫1.4.4

它可以是文件的分隔符,将其作为文本文件打开,查找分隔符。然后,您将拥有可以为空且未命名的列,因为行包含太多分隔符。

因此,您可以使用pandas来处理它们并检查值。对我来说,这比在我的情况下跳过台词要好。

我有同样的问题,当read_csv: ParserError:错误标记数据。 我只是把旧的csv文件保存为一个新的csv文件。问题解决了!

我相信解决方案,

,engine='python'
, error_bad_lines = False

如果它是虚拟列并且你想要删除它,这将是很好的。 在我的例子中,第二行确实有更多的列,我希望这些列被积分,并且有列数= MAX(列)。

请参考下面我无法阅读的解决方案:

try:
    df_data = pd.read_csv(PATH, header = bl_header, sep = str_sep)
except pd.errors.ParserError as err:
    str_find = 'saw '
    int_position = int(str(err).find(str_find)) + len(str_find)
    str_nbCol = str(err)[int_position:]
    l_col = range(int(str_nbCol))
    df_data = pd.read_csv(PATH, header = bl_header, sep = str_sep, names = l_col)

在我的例子中,问题是熊猫版本,所以熊猫1.3.5就像一个魅力。