我正在寻找一个函数,它将两个列表作为输入,并返回Pearson相关性,以及相关性的重要性。


当前回答

Pearson coefficient calculation using pandas in python: I would suggest trying this approach since your data contains lists. It will be easy to interact with your data and manipulate it from the console since you can visualise your data structure and update it as you wish. You can also export the data set and save it and add new data out of the python console for later analysis. This code is simpler and contains less lines of code. I am assuming you need a few quick lines of code to screen your data for further analysis

例子:

data = {'list 1':[2,4,6,8],'list 2':[4,16,36,64]}

import pandas as pd #To Convert your lists to pandas data frames convert your lists into pandas dataframes

df = pd.DataFrame(data, columns = ['list 1','list 2'])

from scipy import stats # For in-built method to get PCC

pearson_coef, p_value = stats.pearsonr(df["list 1"], df["list 2"]) #define the columns to perform calculations on
print("Pearson Correlation Coefficient: ", pearson_coef, "and a P-value of:", p_value) # Results 

但是,在分析之前,你没有发布你的数据给我看数据集的大小或可能需要的转换。

其他回答

与其依赖numpy/scipy,我认为我的答案应该是最容易编码和理解计算Pearson相关系数(PCC)的步骤。

import math

# calculates the mean
def mean(x):
    sum = 0.0
    for i in x:
         sum += i
    return sum / len(x) 

# calculates the sample standard deviation
def sampleStandardDeviation(x):
    sumv = 0.0
    for i in x:
         sumv += (i - mean(x))**2
    return math.sqrt(sumv/(len(x)-1))

# calculates the PCC using both the 2 functions above
def pearson(x,y):
    scorex = []
    scorey = []

    for i in x: 
        scorex.append((i - mean(x))/sampleStandardDeviation(x)) 

    for j in y:
        scorey.append((j - mean(y))/sampleStandardDeviation(y))

# multiplies both lists together into 1 list (hence zip) and sums the whole list   
    return (sum([i*j for i,j in zip(scorex,scorey)]))/(len(x)-1)

PCC的意义基本上是向你展示两个变量/列表的相关性有多强。 需要注意的是,PCC值的范围是-1到1。 0到1之间的值表示正相关。 0值=最高变异(没有任何相关性)。 -1到0之间的值表示负相关。

从Python 3.10开始,Pearson的相关系数(statistics.correlation)可以直接在标准库中获得:

from statistics import correlation

# a = [15, 12, 8, 8, 7, 7, 7, 6, 5, 3]
# b = [10, 25, 17, 11, 13, 17, 20, 13, 9, 15]
correlation(a, b)
# 0.1449981545806852

一个替代方法可以是一个来自linreturn的本地scipy函数,它计算:

斜率:回归线的斜率 截距:回归线的截距 R-value:相关系数 p值:零假设为斜率为零的假设检验的双面p值 stderr:估计的标准错误

这里有一个例子:

a = [15, 12, 8, 8, 7, 7, 7, 6, 5, 3]
b = [10, 25, 17, 11, 13, 17, 20, 13, 9, 15]
from scipy.stats import linregress
linregress(a, b)

会回复你:

LinregressResult(slope=0.20833333333333337, intercept=13.375, rvalue=0.14499815458068521, pvalue=0.68940144811669501, stderr=0.50261704627083648)

这是使用numpy的Pearson Correlation函数的实现:


def corr(data1, data2):
    "data1 & data2 should be numpy arrays."
    mean1 = data1.mean() 
    mean2 = data2.mean()
    std1 = data1.std()
    std2 = data2.std()

#     corr = ((data1-mean1)*(data2-mean2)).mean()/(std1*std2)
    corr = ((data1*data2).mean()-mean1*mean2)/(std1*std2)
    return corr

def correlation_score(y_true, y_pred):
    """Scores the predictions according to the competition rules. 
    
    It is assumed that the predictions are not constant.
    
    Returns the average of each sample's Pearson correlation coefficient"""
    
    y2 = y_pred.copy()
    y2 -= y2.mean(axis=0);    y2 /= y2.std(axis=0) 
    y1 = y_true.copy(); 
    y1 -= y1.mean(axis=0);    y1 /= y1.std(axis=0) 
        
    c = (y1*y2).mean().mean()# Correlation for rescaled matrices is just matrix product and average 
        
    return c