我正在寻找一个函数,它将两个列表作为输入,并返回Pearson相关性,以及相关性的重要性。


当前回答

Pearson coefficient calculation using pandas in python: I would suggest trying this approach since your data contains lists. It will be easy to interact with your data and manipulate it from the console since you can visualise your data structure and update it as you wish. You can also export the data set and save it and add new data out of the python console for later analysis. This code is simpler and contains less lines of code. I am assuming you need a few quick lines of code to screen your data for further analysis

例子:

data = {'list 1':[2,4,6,8],'list 2':[4,16,36,64]}

import pandas as pd #To Convert your lists to pandas data frames convert your lists into pandas dataframes

df = pd.DataFrame(data, columns = ['list 1','list 2'])

from scipy import stats # For in-built method to get PCC

pearson_coef, p_value = stats.pearsonr(df["list 1"], df["list 2"]) #define the columns to perform calculations on
print("Pearson Correlation Coefficient: ", pearson_coef, "and a P-value of:", p_value) # Results 

但是,在分析之前,你没有发布你的数据给我看数据集的大小或可能需要的转换。

其他回答

下面的代码是对该定义的直接解释:

import math

def average(x):
    assert len(x) > 0
    return float(sum(x)) / len(x)

def pearson_def(x, y):
    assert len(x) == len(y)
    n = len(x)
    assert n > 0
    avg_x = average(x)
    avg_y = average(y)
    diffprod = 0
    xdiff2 = 0
    ydiff2 = 0
    for idx in range(n):
        xdiff = x[idx] - avg_x
        ydiff = y[idx] - avg_y
        diffprod += xdiff * ydiff
        xdiff2 += xdiff * xdiff
        ydiff2 += ydiff * ydiff

    return diffprod / math.sqrt(xdiff2 * ydiff2)

测试:

print pearson_def([1,2,3], [1,5,7])

返回

0.981980506062

这与Excel,这个计算器,SciPy(也是NumPy)一致,分别返回0.981980506和0.9819805060619657,和0.98198050606196574。

R:

> cor( c(1,2,3), c(1,5,7))
[1] 0.9819805

编辑:修正了一个由评论者指出的错误。

下面是mkh答案的一个变体,比它运行得快得多,还有scipy.stats。皮尔逊,使用numba。

import numba

@numba.jit
def corr(data1, data2):
    M = data1.size

    sum1 = 0.
    sum2 = 0.
    for i in range(M):
        sum1 += data1[i]
        sum2 += data2[i]
    mean1 = sum1 / M
    mean2 = sum2 / M

    var_sum1 = 0.
    var_sum2 = 0.
    cross_sum = 0.
    for i in range(M):
        var_sum1 += (data1[i] - mean1) ** 2
        var_sum2 += (data2[i] - mean2) ** 2
        cross_sum += (data1[i] * data2[i])

    std1 = (var_sum1 / M) ** .5
    std2 = (var_sum2 / M) ** .5
    cross_mean = cross_sum / M

    return (cross_mean - mean1 * mean2) / (std1 * std2)

对此,我有一个非常简单易懂的解决方案。对于两个长度相等的数组,Pearson系数可以很容易地计算如下:

def manual_pearson(a,b):
"""
Accepts two arrays of equal length, and computes correlation coefficient. 
Numerator is the sum of product of (a - a_avg) and (b - b_avg), 
while denominator is the product of a_std and b_std multiplied by 
length of array. 
"""
  a_avg, b_avg = np.average(a), np.average(b)
  a_stdev, b_stdev = np.std(a), np.std(b)
  n = len(a)
  denominator = a_stdev * b_stdev * n
  numerator = np.sum(np.multiply(a-a_avg, b-b_avg))
  p_coef = numerator/denominator
  return p_coef

与其依赖numpy/scipy,我认为我的答案应该是最容易编码和理解计算Pearson相关系数(PCC)的步骤。

import math

# calculates the mean
def mean(x):
    sum = 0.0
    for i in x:
         sum += i
    return sum / len(x) 

# calculates the sample standard deviation
def sampleStandardDeviation(x):
    sumv = 0.0
    for i in x:
         sumv += (i - mean(x))**2
    return math.sqrt(sumv/(len(x)-1))

# calculates the PCC using both the 2 functions above
def pearson(x,y):
    scorex = []
    scorey = []

    for i in x: 
        scorex.append((i - mean(x))/sampleStandardDeviation(x)) 

    for j in y:
        scorey.append((j - mean(y))/sampleStandardDeviation(y))

# multiplies both lists together into 1 list (hence zip) and sums the whole list   
    return (sum([i*j for i,j in zip(scorex,scorey)]))/(len(x)-1)

PCC的意义基本上是向你展示两个变量/列表的相关性有多强。 需要注意的是,PCC值的范围是-1到1。 0到1之间的值表示正相关。 0值=最高变异(没有任何相关性)。 -1到0之间的值表示负相关。

您可能想知道如何在寻找特定方向的相关性(负相关或正相关)的上下文中解释您的概率。这是我写的一个函数。它甚至可能是正确的!

这是基于我从http://www.vassarstats.net/rsig.html和http://en.wikipedia.org/wiki/Student%27s_t_distribution上收集到的信息,感谢这里发布的其他答案。

# Given (possibly random) variables, X and Y, and a correlation direction,
# returns:
#  (r, p),
# where r is the Pearson correlation coefficient, and p is the probability
# that there is no correlation in the given direction.
#
# direction:
#  if positive, p is the probability that there is no positive correlation in
#    the population sampled by X and Y
#  if negative, p is the probability that there is no negative correlation
#  if 0, p is the probability that there is no correlation in either direction
def probabilityNotCorrelated(X, Y, direction=0):
    x = len(X)
    if x != len(Y):
        raise ValueError("variables not same len: " + str(x) + ", and " + \
                         str(len(Y)))
    if x < 6:
        raise ValueError("must have at least 6 samples, but have " + str(x))
    (corr, prb_2_tail) = stats.pearsonr(X, Y)

    if not direction:
        return (corr, prb_2_tail)

    prb_1_tail = prb_2_tail / 2
    if corr * direction > 0:
        return (corr, prb_1_tail)

    return (corr, 1 - prb_1_tail)