我有一个数字列表:

myList = [1, 2, 3, 100, 5]

现在如果我对这个列表进行排序得到[1,2,3,5,100]。 我想要的是元素的下标 原始列表的排序顺序,即[0,1,2,4,3] ——ala MATLAB的排序函数,返回两者 值和索引。


当前回答

将numpy导入为np

对指数

S=[11,2,44,55,66,0,10,3,33]

r=np.argsort(S)

[output]=array([5, 1, 7, 6, 0, 8, 2, 3, 4])

argsort按顺序返回S的索引

价值

np.sort(S)

[output]=array([ 0,  2,  3, 10, 11, 33, 44, 55, 66])

其他回答

如果你使用numpy,你有argsort()函数可用:

>>> import numpy
>>> numpy.argsort(myList)
array([0, 1, 2, 4, 3])

http://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html

这将返回对数组或列表进行排序的参数。

像下面这样:

>>> myList = [1, 2, 3, 100, 5]
>>> [i[0] for i in sorted(enumerate(myList), key=lambda x:x[1])]
[0, 1, 2, 4, 3]

enumerate(myList)给你一个包含(index, value)元组的列表:

[(0, 1), (1, 2), (2, 3), (3, 100), (4, 5)]

通过将列表传递给sorted并指定一个函数来提取排序键(每个元组的第二个元素;这就是的意义。最后,使用[i[0] for i in…列表理解。

我用perfplot(我的一个项目)快速检查了这些功能的性能,发现很难推荐其他功能

np.argsort(x)

(注意对数刻度):


代码重现情节:

import perfplot
import numpy as np


def sorted_enumerate(seq):
    return [i for (v, i) in sorted((v, i) for (i, v) in enumerate(seq))]


def sorted_enumerate_key(seq):
    return [x for x, y in sorted(enumerate(seq), key=lambda x: x[1])]


def sorted_range(seq):
    return sorted(range(len(seq)), key=seq.__getitem__)


b = perfplot.bench(
    setup=np.random.rand,
    kernels=[sorted_enumerate, sorted_enumerate_key, sorted_range, np.argsort],
    n_range=[2 ** k for k in range(15)],
    xlabel="len(x)",
)
b.save("out.png")

其他答案都是错误的。

运行一次argsort并不是解决方案。 例如,以下代码:

import numpy as np
x = [3,1,2]
np.argsort(x)

生成数组([1,2,0],dtype=int64),这不是我们想要的。

答案应该是运行argsort两次:

import numpy as np
x = [3,1,2]
np.argsort(np.argsort(x))

按预期给出数组([2,0,1],dtype=int64)。

使用Numpy包最简单的方法:

import numpy
s = numpy.array([2, 3, 1, 4, 5])
sort_index = numpy.argsort(s)
print(sort_index)

但是如果你想要你的代码应该使用baisc python代码:

s = [2, 3, 1, 4, 5]
li=[]
  
for i in range(len(s)):
      li.append([s[i],i])
li.sort()
sort_index = []
  
for x in li:
      sort_index.append(x[1])
  
print(sort_index)