顶部(以及许多其他)答案是基于plot .pause()构建的,但这是matplotlib中动画情节的旧方法。它不仅很慢,而且还会导致在每次更新时捕获焦点(我很难停止绘图python进程)。
TL;DR:您可能需要使用matplotlib。动画(如文档中所述)。
在深入研究了各种答案和代码片段后,事实证明,这是一种平滑的方法,可以无限地绘制传入数据。
下面是快速启动的代码。它每200ms无限地用[0,100]中的随机数绘制当前时间,同时还处理视图的自动缩放:
from datetime import datetime
from matplotlib import pyplot
from matplotlib.animation import FuncAnimation
from random import randrange
x_data, y_data = [], []
figure = pyplot.figure()
line, = pyplot.plot_date(x_data, y_data, '-')
def update(frame):
x_data.append(datetime.now())
y_data.append(randrange(0, 100))
line.set_data(x_data, y_data)
figure.gca().relim()
figure.gca().autoscale_view()
return line,
animation = FuncAnimation(figure, update, interval=200)
pyplot.show()
你也可以在FuncAnimation文档中探索blit,以获得更好的性能。
一个来自blit文档的例子:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
fig, ax = plt.subplots()
xdata, ydata = [], []
ln, = plt.plot([], [], 'ro')
def init():
ax.set_xlim(0, 2*np.pi)
ax.set_ylim(-1, 1)
return ln,
def update(frame):
xdata.append(frame)
ydata.append(np.sin(frame))
ln.set_data(xdata, ydata)
return ln,
ani = FuncAnimation(fig, update, frames=np.linspace(0, 2*np.pi, 128),
init_func=init, blit=True)
plt.show()