我正在尝试使用OpenCV实时绘制来自摄像机的一些数据。但是,实时绘图(使用matplotlib)似乎不能正常工作。

我把这个问题隔离在这个简单的例子中:

fig = plt.figure()
plt.axis([0, 1000, 0, 1])

i = 0
x = list()
y = list()

while i < 1000:
    temp_y = np.random.random()
    x.append(i)
    y.append(temp_y)
    plt.scatter(i, temp_y)
    i += 1
    plt.show()

我希望这个例子能分别画出1000个点。实际发生的情况是,窗口弹出,显示第一个点(好吧),然后等待循环结束,然后填充图的其余部分。

有什么想法,为什么我没有看到点填充一个时间?


当前回答

另一种选择是使用散景。在我看来,至少对于实时情节来说,这是一个不错的选择。下面是问题中代码的散景版本:

from bokeh.plotting import curdoc, figure
import random
import time

def update():
    global i
    temp_y = random.random()
    r.data_source.stream({'x': [i], 'y': [temp_y]})
    i += 1

i = 0
p = figure()
r = p.circle([], [])
curdoc().add_root(p)
curdoc().add_periodic_callback(update, 100)

对于运行它:

pip3 install bokeh
bokeh serve --show test.py

Bokeh通过websocket通信在web浏览器中显示结果。当数据由远程无头服务器进程生成时,它尤其有用。

其他回答

问题似乎是您希望plot .show()显示窗口,然后返回。它不会那样做。程序将在此时停止,只有在您关闭该窗口后才恢复。您应该能够测试这一点:如果您关闭窗口,然后另一个窗口将弹出。

要解决这个问题,只需在循环之后调用一次plt.show()。然后你就得到了完整的情节。(但不是“实时绘图”)

你可以尝试像这样设置关键字参数块:plt.show(block=False)在开始时,然后使用.draw()来更新。

带有保留线条风格的圆形缓冲区的活动情节:

import os
import time
import psutil
import collections

import matplotlib.pyplot as plt

pts_n = 100
x = collections.deque(maxlen=pts_n)
y = collections.deque(maxlen=pts_n)
(line, ) = plt.plot(x, y, linestyle="--")

my_process = psutil.Process(os.getpid())
t_start = time.time()
while True:
    x.append(time.time() - t_start)
    y.append(my_process.cpu_percent())

    line.set_xdata(x)
    line.set_ydata(y)
    plt.gca().relim()
    plt.gca().autoscale_view()
    plt.pause(0.1)

表演可能不是最好的选择。我要做的是使用pyplot.draw()代替。您还可能希望在循环中包含一个小的时间延迟(例如,time.sleep(0.05)),以便您可以看到情节的发生。如果我对你的例子做这些改变,它对我有用,我看到每个点一次出现一个。

下面是问题代码的工作版本(至少需要2011年11月14日的Matplotlib 1.1.0版本):

import numpy as np
import matplotlib.pyplot as plt

plt.axis([0, 10, 0, 1])

for i in range(10):
    y = np.random.random()
    plt.scatter(i, y)
    plt.pause(0.05)

plt.show()

请注意对plt.pause(0.05)的调用,它既绘制新数据,又运行GUI的事件循环(允许鼠标交互)。

如果您对实时绘图感兴趣,我建议您查看matplotlib的动画API。特别是,使用blit来避免在每一帧上重画背景可以给你带来实质性的速度增益(~10倍):

#!/usr/bin/env python

import numpy as np
import time
import matplotlib
matplotlib.use('GTKAgg')
from matplotlib import pyplot as plt


def randomwalk(dims=(256, 256), n=20, sigma=5, alpha=0.95, seed=1):
    """ A simple random walk with memory """

    r, c = dims
    gen = np.random.RandomState(seed)
    pos = gen.rand(2, n) * ((r,), (c,))
    old_delta = gen.randn(2, n) * sigma

    while True:
        delta = (1. - alpha) * gen.randn(2, n) * sigma + alpha * old_delta
        pos += delta
        for ii in xrange(n):
            if not (0. <= pos[0, ii] < r):
                pos[0, ii] = abs(pos[0, ii] % r)
            if not (0. <= pos[1, ii] < c):
                pos[1, ii] = abs(pos[1, ii] % c)
        old_delta = delta
        yield pos


def run(niter=1000, doblit=True):
    """
    Display the simulation using matplotlib, optionally using blit for speed
    """

    fig, ax = plt.subplots(1, 1)
    ax.set_aspect('equal')
    ax.set_xlim(0, 255)
    ax.set_ylim(0, 255)
    ax.hold(True)
    rw = randomwalk()
    x, y = rw.next()

    plt.show(False)
    plt.draw()

    if doblit:
        # cache the background
        background = fig.canvas.copy_from_bbox(ax.bbox)

    points = ax.plot(x, y, 'o')[0]
    tic = time.time()

    for ii in xrange(niter):

        # update the xy data
        x, y = rw.next()
        points.set_data(x, y)

        if doblit:
            # restore background
            fig.canvas.restore_region(background)

            # redraw just the points
            ax.draw_artist(points)

            # fill in the axes rectangle
            fig.canvas.blit(ax.bbox)

        else:
            # redraw everything
            fig.canvas.draw()

    plt.close(fig)
    print "Blit = %s, average FPS: %.2f" % (
        str(doblit), niter / (time.time() - tic))

if __name__ == '__main__':
    run(doblit=False)
    run(doblit=True)

输出:

Blit = False, average FPS: 54.37
Blit = True, average FPS: 438.27