我正在尝试使用OpenCV实时绘制来自摄像机的一些数据。但是,实时绘图(使用matplotlib)似乎不能正常工作。

我把这个问题隔离在这个简单的例子中:

fig = plt.figure()
plt.axis([0, 1000, 0, 1])

i = 0
x = list()
y = list()

while i < 1000:
    temp_y = np.random.random()
    x.append(i)
    y.append(temp_y)
    plt.scatter(i, temp_y)
    i += 1
    plt.show()

我希望这个例子能分别画出1000个点。实际发生的情况是,窗口弹出,显示第一个点(好吧),然后等待循环结束,然后填充图的其余部分。

有什么想法,为什么我没有看到点填充一个时间?


当前回答

下面是问题代码的工作版本(至少需要2011年11月14日的Matplotlib 1.1.0版本):

import numpy as np
import matplotlib.pyplot as plt

plt.axis([0, 10, 0, 1])

for i in range(10):
    y = np.random.random()
    plt.scatter(i, y)
    plt.pause(0.05)

plt.show()

请注意对plt.pause(0.05)的调用,它既绘制新数据,又运行GUI的事件循环(允许鼠标交互)。

其他回答

问题似乎是您希望plot .show()显示窗口,然后返回。它不会那样做。程序将在此时停止,只有在您关闭该窗口后才恢复。您应该能够测试这一点:如果您关闭窗口,然后另一个窗口将弹出。

要解决这个问题,只需在循环之后调用一次plt.show()。然后你就得到了完整的情节。(但不是“实时绘图”)

你可以尝试像这样设置关键字参数块:plt.show(block=False)在开始时,然后使用.draw()来更新。

这些方法对我都没用。 但我找到了这个 实时matplotlib图仍然在循环中不工作

你所需要做的就是添加

plt.pause(0.0001)

然后你可以看到新的地块。

所以你的代码应该是这样的,它可以工作

import matplotlib.pyplot as plt
import numpy as np
plt.ion() ## Note this correction
fig=plt.figure()
plt.axis([0,1000,0,1])

i=0
x=list()
y=list()

while i <1000:
    temp_y=np.random.random();
    x.append(i);
    y.append(temp_y);
    plt.scatter(i,temp_y);
    i+=1;
    plt.show()
    plt.pause(0.0001) #Note this correction

实时绘制CPU使用情况的示例用例。

import time
import psutil
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111)

i = 0
x, y = [], []

while True:
    x.append(i)
    y.append(psutil.cpu_percent())

    ax.plot(x, y, color='b')

    fig.canvas.draw()

    ax.set_xlim(left=max(0, i - 50), right=i + 50)
    fig.show()
    plt.pause(0.05)
    i += 1

另一种选择是使用散景。在我看来,至少对于实时情节来说,这是一个不错的选择。下面是问题中代码的散景版本:

from bokeh.plotting import curdoc, figure
import random
import time

def update():
    global i
    temp_y = random.random()
    r.data_source.stream({'x': [i], 'y': [temp_y]})
    i += 1

i = 0
p = figure()
r = p.circle([], [])
curdoc().add_root(p)
curdoc().add_periodic_callback(update, 100)

对于运行它:

pip3 install bokeh
bokeh serve --show test.py

Bokeh通过websocket通信在web浏览器中显示结果。当数据由远程无头服务器进程生成时,它尤其有用。

带有保留线条风格的圆形缓冲区的活动情节:

import os
import time
import psutil
import collections

import matplotlib.pyplot as plt

pts_n = 100
x = collections.deque(maxlen=pts_n)
y = collections.deque(maxlen=pts_n)
(line, ) = plt.plot(x, y, linestyle="--")

my_process = psutil.Process(os.getpid())
t_start = time.time()
while True:
    x.append(time.time() - t_start)
    y.append(my_process.cpu_percent())

    line.set_xdata(x)
    line.set_ydata(y)
    plt.gca().relim()
    plt.gca().autoscale_view()
    plt.pause(0.1)