我想定义一个没有初始化长度的二维数组,如下所示:

Matrix = [][]

但这给出了一个错误:

IndexError:列表索引超出范围


当前回答

在Python中,您将创建一个列表列表。您不必提前声明维度,但可以这样做。例如:

matrix = []
matrix.append([])
matrix.append([])
matrix[0].append(2)
matrix[1].append(3)

现在矩阵[0][0]==2,矩阵[1][0]==3。您还可以使用列表理解语法。本示例使用它两次来构建“二维列表”:

from itertools import count, takewhile
matrix = [[i for i in takewhile(lambda j: j < (k+1) * 10, count(k*10))] for k in range(10)]

其他回答

我正在编写我的第一个Python脚本,我对方阵示例有点困惑,所以我希望下面的示例可以帮助您节省一些时间:

 # Creates a 2 x 5 matrix
 Matrix = [[0 for y in xrange(5)] for x in xrange(2)]

因此

Matrix[1][4] = 2 # Valid
Matrix[4][1] = 3 # IndexError: list index out of range

从技术上讲,您正在尝试对未初始化的数组进行索引。在添加项目之前,必须先用列表初始化外部列表;Python调用此“列表理解”。

# Creates a list containing 5 lists, each of 8 items, all set to 0
w, h = 8, 5
Matrix = [[0 for x in range(w)] for y in range(h)] 

#您现在可以向列表中添加项目:

Matrix[0][0] = 1
Matrix[6][0] = 3 # error! range... 
Matrix[0][6] = 3 # valid

注意,矩阵是“y”地址主,换句话说,“y索引”在“x索引”之前。

print Matrix[0][0] # prints 1
x, y = 0, 6 
print Matrix[x][y] # prints 3; be careful with indexing! 

尽管您可以根据自己的意愿命名它们,但我这样看是为了避免索引中可能出现的一些混淆,如果您对内部和外部列表都使用“x”,并且希望使用非方形矩阵。

如果要创建空矩阵,正确的语法是

matrix = [[]]

如果你想生成一个大小为5、填充有0的矩阵,

matrix = [[0 for i in xrange(5)] for i in xrange(5)]

公认的答案是正确的,但我花了一段时间才明白,我也可以使用它创建一个完全空的数组。

l =  [[] for _ in range(3)]

结果

[[], [], []]

如果你真的想要一个矩阵,你最好使用numpy。numpy中的矩阵运算通常使用二维数组类型。创建新阵列有多种方法;其中最有用的是zeros函数,它接受一个形状参数并返回一个给定形状的数组,值初始化为零:

>>> import numpy
>>> numpy.zeros((5, 5))
array([[ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.]])

以下是创建二维数组和矩阵的一些其他方法(为了紧凑,去掉了输出):

numpy.arange(25).reshape((5, 5))         # create a 1-d range and reshape
numpy.array(range(25)).reshape((5, 5))   # pass a Python range and reshape
numpy.array([5] * 25).reshape((5, 5))    # pass a Python list and reshape
numpy.empty((5, 5))                      # allocate, but don't initialize
numpy.ones((5, 5))                       # initialize with ones

numpy也提供了一种矩阵类型,但它不再推荐用于任何用途,将来可能会从numpy中删除。