我想定义一个没有初始化长度的二维数组,如下所示:

Matrix = [][]

但这给出了一个错误:

IndexError:列表索引超出范围


当前回答

如果要创建空矩阵,正确的语法是

matrix = [[]]

如果你想生成一个大小为5、填充有0的矩阵,

matrix = [[0 for i in xrange(5)] for i in xrange(5)]

其他回答

如果你只需要一个二维容器来容纳一些元素,你可以方便地使用字典来代替:

Matrix = {}

然后您可以执行以下操作:

Matrix[1,2] = 15
print Matrix[1,2]

这是因为1,2是一个元组,您将其用作索引字典的键。结果类似于哑稀疏矩阵。

如osa和Josap Valls所示,您还可以使用Matrix=collections.defaultdict(lambda:0),以便丢失的元素具有默认值0。

Vatsal进一步指出,这种方法对于大型矩阵可能不是很有效,只应在代码的非性能关键部分使用。

试试看:

rows = int(input('Enter rows\n'))
my_list = []
for i in range(rows):
    my_list.append(list(map(int, input().split())))

如果你真的想要一个矩阵,你最好使用numpy。numpy中的矩阵运算通常使用二维数组类型。创建新阵列有多种方法;其中最有用的是zeros函数,它接受一个形状参数并返回一个给定形状的数组,值初始化为零:

>>> import numpy
>>> numpy.zeros((5, 5))
array([[ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.]])

以下是创建二维数组和矩阵的一些其他方法(为了紧凑,去掉了输出):

numpy.arange(25).reshape((5, 5))         # create a 1-d range and reshape
numpy.array(range(25)).reshape((5, 5))   # pass a Python range and reshape
numpy.array([5] * 25).reshape((5, 5))    # pass a Python list and reshape
numpy.empty((5, 5))                      # allocate, but don't initialize
numpy.ones((5, 5))                       # initialize with ones

numpy也提供了一种矩阵类型,但它不再推荐用于任何用途,将来可能会从numpy中删除。

从技术上讲,您正在尝试对未初始化的数组进行索引。在添加项目之前,必须先用列表初始化外部列表;Python调用此“列表理解”。

# Creates a list containing 5 lists, each of 8 items, all set to 0
w, h = 8, 5
Matrix = [[0 for x in range(w)] for y in range(h)] 

#您现在可以向列表中添加项目:

Matrix[0][0] = 1
Matrix[6][0] = 3 # error! range... 
Matrix[0][6] = 3 # valid

注意,矩阵是“y”地址主,换句话说,“y索引”在“x索引”之前。

print Matrix[0][0] # prints 1
x, y = 0, 6 
print Matrix[x][y] # prints 3; be careful with indexing! 

尽管您可以根据自己的意愿命名它们,但我这样看是为了避免索引中可能出现的一些混淆,如果您对内部和外部列表都使用“x”,并且希望使用非方形矩阵。

如果您想创建一个二维矩阵,其维度由两个变量定义,并使用其所有元素的默认值对其进行初始化。您可以使用以下简单语法

n_rows=3
n_cols=4
aux_matrix= [[1]*n_cols]*n_rows