我想定义一个没有初始化长度的二维数组,如下所示:
Matrix = [][]
但这给出了一个错误:
IndexError:列表索引超出范围
我想定义一个没有初始化长度的二维数组,如下所示:
Matrix = [][]
但这给出了一个错误:
IndexError:列表索引超出范围
当前回答
使用NumPy,可以如下初始化空矩阵:
import numpy as np
mm = np.matrix([])
然后像这样附加数据:
mm = np.append(mm, [[1,2]], axis=1)
其他回答
可以通过将两个或多个方括号或第三个方括号([],用逗号分隔)与方括号嵌套来创建一个空的二维列表,如下所示:
Matrix = [[], []]
现在假设您想将1附加到矩阵[0][0],然后键入:
Matrix[0].append(1)
现在,键入矩阵并按Enter键。输出将为:
[[1], []]
如果您输入以下语句
Matrix[1].append(1)
那么矩阵将是
[[], [1]]
如果你真的想要一个矩阵,你最好使用numpy。numpy中的矩阵运算通常使用二维数组类型。创建新阵列有多种方法;其中最有用的是zeros函数,它接受一个形状参数并返回一个给定形状的数组,值初始化为零:
>>> import numpy
>>> numpy.zeros((5, 5))
array([[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.]])
以下是创建二维数组和矩阵的一些其他方法(为了紧凑,去掉了输出):
numpy.arange(25).reshape((5, 5)) # create a 1-d range and reshape
numpy.array(range(25)).reshape((5, 5)) # pass a Python range and reshape
numpy.array([5] * 25).reshape((5, 5)) # pass a Python list and reshape
numpy.empty((5, 5)) # allocate, but don't initialize
numpy.ones((5, 5)) # initialize with ones
numpy也提供了一种矩阵类型,但它不再推荐用于任何用途,将来可能会从numpy中删除。
如果你只需要一个二维容器来容纳一些元素,你可以方便地使用字典来代替:
Matrix = {}
然后您可以执行以下操作:
Matrix[1,2] = 15
print Matrix[1,2]
这是因为1,2是一个元组,您将其用作索引字典的键。结果类似于哑稀疏矩阵。
如osa和Josap Valls所示,您还可以使用Matrix=collections.defaultdict(lambda:0),以便丢失的元素具有默认值0。
Vatsal进一步指出,这种方法对于大型矩阵可能不是很有效,只应在代码的非性能关键部分使用。
通常,go to模块是NumPy:
import numpy as np
# Generate a random matrix of floats
np.random.rand(cols,rows)
# Generate a random matrix of integers
np.random.randint(1, 10, size=(cols,rows))
l=[[0]*(L) for _ in range(W)]
将快于:
l = [[0 for x in range(L)] for y in range(W)]