我想定义一个没有初始化长度的二维数组,如下所示:

Matrix = [][]

但这给出了一个错误:

IndexError:列表索引超出范围


当前回答

我正在编写我的第一个Python脚本,我对方阵示例有点困惑,所以我希望下面的示例可以帮助您节省一些时间:

 # Creates a 2 x 5 matrix
 Matrix = [[0 for y in xrange(5)] for x in xrange(2)]

因此

Matrix[1][4] = 2 # Valid
Matrix[4][1] = 3 # IndexError: list index out of range

其他回答

从技术上讲,您正在尝试对未初始化的数组进行索引。在添加项目之前,必须先用列表初始化外部列表;Python调用此“列表理解”。

# Creates a list containing 5 lists, each of 8 items, all set to 0
w, h = 8, 5
Matrix = [[0 for x in range(w)] for y in range(h)] 

#您现在可以向列表中添加项目:

Matrix[0][0] = 1
Matrix[6][0] = 3 # error! range... 
Matrix[0][6] = 3 # valid

注意,矩阵是“y”地址主,换句话说,“y索引”在“x索引”之前。

print Matrix[0][0] # prints 1
x, y = 0, 6 
print Matrix[x][y] # prints 3; be careful with indexing! 

尽管您可以根据自己的意愿命名它们,但我这样看是为了避免索引中可能出现的一些混淆,如果您对内部和外部列表都使用“x”,并且希望使用非方形矩阵。

使用列表:

matrix_in_python  = [['Roy',80,75,85,90,95],['John',75,80,75,85,100],['Dave',80,80,80,90,95]]

通过使用dict:您还可以将这些信息存储在哈希表中,以便快速搜索,例如

matrix = { '1':[0,0] , '2':[0,1],'3':[0,2],'4' : [1,0],'5':[1,1],'6':[1,2],'7':[2,0],'8':[2,1],'9':[2,2]};

矩阵['1']将在O(1)时间内给出结果

*nb:你需要处理哈希表中的冲突

为便于阅读而重写:

# 2D array/ matrix

# 5 rows, 5 cols
rows_count = 5
cols_count = 5

# create
#     creation looks reverse
#     create an array of "cols_count" cols, for each of the "rows_count" rows
#        all elements are initialized to 0
two_d_array = [[0 for j in range(cols_count)] for i in range(rows_count)]

# index is from 0 to 4
#     for both rows & cols
#     since 5 rows, 5 cols

# use
two_d_array[0][0] = 1
print two_d_array[0][0]  # prints 1   # 1st row, 1st col (top-left element of matrix)

two_d_array[1][0] = 2
print two_d_array[1][0]  # prints 2   # 2nd row, 1st col

two_d_array[1][4] = 3
print two_d_array[1][4]  # prints 3   # 2nd row, last col

two_d_array[4][4] = 4
print two_d_array[4][4]  # prints 4   # last row, last col (right, bottom element of matrix)

使用NumPy,可以如下初始化空矩阵:

import numpy as np
mm = np.matrix([])

然后像这样附加数据:

mm = np.append(mm, [[1,2]], axis=1)

Use:

import copy

def ndlist(*args, init=0):
    dp = init
    for x in reversed(args):
        dp = [copy.deepcopy(dp) for _ in range(x)]
    return dp

l = ndlist(1,2,3,4) # 4 dimensional list initialized with 0's
l[0][1][2][3] = 1

我认为NumPy是最好的选择。如果您不想使用NumPy,上面是一个通用的。