我想定义一个没有初始化长度的二维数组,如下所示:

Matrix = [][]

但这给出了一个错误:

IndexError:列表索引超出范围


当前回答

我正在编写我的第一个Python脚本,我对方阵示例有点困惑,所以我希望下面的示例可以帮助您节省一些时间:

 # Creates a 2 x 5 matrix
 Matrix = [[0 for y in xrange(5)] for x in xrange(2)]

因此

Matrix[1][4] = 2 # Valid
Matrix[4][1] = 3 # IndexError: list index out of range

其他回答

下面是一个用于初始化列表列表的简短符号:

matrix = [[0]*5 for i in range(5)]

不幸的是,将其缩短为5*[5*[0]这样的长度并不能真正起作用,因为您最终会得到相同列表的5个副本,因此当您修改其中一个副本时,它们都会发生变化,例如:

>>> matrix = 5*[5*[0]]
>>> matrix
[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]
>>> matrix[4][4] = 2
>>> matrix
[[0, 0, 0, 0, 2], [0, 0, 0, 0, 2], [0, 0, 0, 0, 2], [0, 0, 0, 0, 2], [0, 0, 0, 0, 2]]

如果你只需要一个二维容器来容纳一些元素,你可以方便地使用字典来代替:

Matrix = {}

然后您可以执行以下操作:

Matrix[1,2] = 15
print Matrix[1,2]

这是因为1,2是一个元组,您将其用作索引字典的键。结果类似于哑稀疏矩阵。

如osa和Josap Valls所示,您还可以使用Matrix=collections.defaultdict(lambda:0),以便丢失的元素具有默认值0。

Vatsal进一步指出,这种方法对于大型矩阵可能不是很有效,只应在代码的非性能关键部分使用。

如果你真的想要一个矩阵,你最好使用numpy。numpy中的矩阵运算通常使用二维数组类型。创建新阵列有多种方法;其中最有用的是zeros函数,它接受一个形状参数并返回一个给定形状的数组,值初始化为零:

>>> import numpy
>>> numpy.zeros((5, 5))
array([[ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.]])

以下是创建二维数组和矩阵的一些其他方法(为了紧凑,去掉了输出):

numpy.arange(25).reshape((5, 5))         # create a 1-d range and reshape
numpy.array(range(25)).reshape((5, 5))   # pass a Python range and reshape
numpy.array([5] * 25).reshape((5, 5))    # pass a Python list and reshape
numpy.empty((5, 5))                      # allocate, but don't initialize
numpy.ones((5, 5))                       # initialize with ones

numpy也提供了一种矩阵类型,但它不再推荐用于任何用途,将来可能会从numpy中删除。

如果您希望能够将其视为2D阵列,而不是被迫根据列表进行思考(在我看来更自然),可以执行以下操作:

import numpy
Nx=3; Ny=4
my2Dlist= numpy.zeros((Nx,Ny)).tolist()

结果是一个列表(不是NumPy数组),您可以用数字、字符串等覆盖各个位置。

# Creates a list containing 5 lists initialized to 0
Matrix = [[0]*5]*5

注意这个简短的表达,请参见@F.J的答案中的完整解释