这是一个logistic sigmoid函数:

我知道x,现在如何用Python计算F(x) ?

设x = 0.458。

F(x) = ?


当前回答

另一种方式

>>> def sigmoid(x):
...     return 1 /(1+(math.e**-x))
...
>>> sigmoid(0.458)

其他回答

下面是执行相同操作的python函数。

def sigmoid(x) :
    return 1.0/(1+np.exp(-x))

另一种方式

>>> def sigmoid(x):
...     return 1 /(1+(math.e**-x))
...
>>> sigmoid(0.458)

logistic s型函数的数值稳定版本。

    def sigmoid(x):
        pos_mask = (x >= 0)
        neg_mask = (x < 0)
        z = np.zeros_like(x,dtype=float)
        z[pos_mask] = np.exp(-x[pos_mask])
        z[neg_mask] = np.exp(x[neg_mask])
        top = np.ones_like(x,dtype=float)
        top[neg_mask] = z[neg_mask]
        return top / (1 + z)

这应该做到:

import math

def sigmoid(x):
  return 1 / (1 + math.exp(-x))

现在你可以通过调用:

>>> sigmoid(0.458)
0.61253961344091512

更新:请注意,上面的操作主要是将给定表达式直接一对一地转换为Python代码。它没有经过测试,也没有被认为是一个数字上可靠的实现。如果你知道你需要一个非常健壮的实现,我相信其他人已经考虑过这个问题了。

我觉得很多人可能会对自由参数感兴趣来改变sigmoid函数的形状。其次,对于许多应用程序,您需要使用镜像sigmoid函数。第三,你可能想做一个简单的归一化,例如输出值在0和1之间。

Try:

def normalized_sigmoid_fkt(a, b, x):
   '''
   Returns array of a horizontal mirrored normalized sigmoid function
   output between 0 and 1
   Function parameters a = center; b = width
   '''
   s= 1/(1+np.exp(b*(x-a)))
   return 1*(s-min(s))/(max(s)-min(s)) # normalize function to 0-1

并绘制和比较:

def draw_function_on_2x2_grid(x): 
    fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
    plt.subplots_adjust(wspace=.5)
    plt.subplots_adjust(hspace=.5)

    ax1.plot(x, normalized_sigmoid_fkt( .5, 18, x))
    ax1.set_title('1')

    ax2.plot(x, normalized_sigmoid_fkt(0.518, 10.549, x))
    ax2.set_title('2')

    ax3.plot(x, normalized_sigmoid_fkt( .7, 11, x))
    ax3.set_title('3')

    ax4.plot(x, normalized_sigmoid_fkt( .2, 14, x))
    ax4.set_title('4')
    plt.suptitle('Different normalized (sigmoid) function',size=10 )

    return fig

最后:

x = np.linspace(0,1,100)
Travel_function = draw_function_on_2x2_grid(x)