从数据框架中删除重复列的最简单方法是什么?
我正在阅读一个文本文件,通过重复的列:
import pandas as pd
df=pd.read_table(fname)
列名为:
Time, Time Relative, N2, Time, Time Relative, H2, etc...
所有“时间”和“时间相对”列包含相同的数据。我想要:
Time, Time Relative, N2, H2
我所有的尝试删除,删除等,如:
df=df.T.drop_duplicates().T
导致唯一值的索引错误:
Reindexing only valid with uniquely valued index objects
对不起,我是熊猫的菜鸟。任何建议将不胜感激。
额外的细节
熊猫版本:0.9.0
Python版本:2.7.3
Windows 7
(通过Pythonxy 2.7.3.0安装)
数据文件(注:在实际文件中,列之间以制表符分隔,此处以4个空格分隔):
Time Time Relative [s] N2[%] Time Time Relative [s] H2[ppm]
2/12/2013 9:20:55 AM 6.177 9.99268e+001 2/12/2013 9:20:55 AM 6.177 3.216293e-005
2/12/2013 9:21:06 AM 17.689 9.99296e+001 2/12/2013 9:21:06 AM 17.689 3.841667e-005
2/12/2013 9:21:18 AM 29.186 9.992954e+001 2/12/2013 9:21:18 AM 29.186 3.880365e-005
... etc ...
2/12/2013 2:12:44 PM 17515.269 9.991756+001 2/12/2013 2:12:44 PM 17515.269 2.800279e-005
2/12/2013 2:12:55 PM 17526.769 9.991754e+001 2/12/2013 2:12:55 PM 17526.769 2.880386e-005
2/12/2013 2:13:07 PM 17538.273 9.991797e+001 2/12/2013 2:13:07 PM 17538.273 3.131447e-005
听起来好像您已经知道了唯一的列名。如果是这样的话,那么df = df['时间','时间相对','N2']将有效。
如果不是,你的解决方案应该工作:
In [101]: vals = np.random.randint(0,20, (4,3))
vals
Out[101]:
array([[ 3, 13, 0],
[ 1, 15, 14],
[14, 19, 14],
[19, 5, 1]])
In [106]: df = pd.DataFrame(np.hstack([vals, vals]), columns=['Time', 'H1', 'N2', 'Time Relative', 'N2', 'Time'] )
df
Out[106]:
Time H1 N2 Time Relative N2 Time
0 3 13 0 3 13 0
1 1 15 14 1 15 14
2 14 19 14 14 19 14
3 19 5 1 19 5 1
In [107]: df.T.drop_duplicates().T
Out[107]:
Time H1 N2
0 3 13 0
1 1 15 14
2 14 19 14
3 19 5 1
您可能有一些特定于您的数据的东西搞砸了。如果你能提供更多关于数据的细节,我们会给予更多的帮助。
编辑:
如Andy所说,问题可能在于重复的列标题。
对于一个示例表文件'dummy.csv',我创建了:
Time H1 N2 Time N2 Time Relative
3 13 13 3 13 0
1 15 15 1 15 14
14 19 19 14 19 14
19 5 5 19 5 1
使用read_table提供唯一的列并正常工作:
In [151]: df2 = pd.read_table('dummy.csv')
df2
Out[151]:
Time H1 N2 Time.1 N2.1 Time Relative
0 3 13 13 3 13 0
1 1 15 15 1 15 14
2 14 19 19 14 19 14
3 19 5 5 19 5 1
In [152]: df2.T.drop_duplicates().T
Out[152]:
Time H1 Time Relative
0 3 13 0
1 1 15 14
2 14 19 14
3 19 5 1
如果你的版本不允许,你可以拼凑一个解决方案,使它们独一无二:
In [169]: df2 = pd.read_table('dummy.csv', header=None)
df2
Out[169]:
0 1 2 3 4 5
0 Time H1 N2 Time N2 Time Relative
1 3 13 13 3 13 0
2 1 15 15 1 15 14
3 14 19 19 14 19 14
4 19 5 5 19 5 1
In [171]: from collections import defaultdict
col_counts = defaultdict(int)
col_ix = df2.first_valid_index()
In [172]: cols = []
for col in df2.ix[col_ix]:
cnt = col_counts[col]
col_counts[col] += 1
suf = '_' + str(cnt) if cnt else ''
cols.append(col + suf)
cols
Out[172]:
['Time', 'H1', 'N2', 'Time_1', 'N2_1', 'Time Relative']
In [174]: df2.columns = cols
df2 = df2.drop([col_ix])
In [177]: df2
Out[177]:
Time H1 N2 Time_1 N2_1 Time Relative
1 3 13 13 3 13 0
2 1 15 15 1 15 14
3 14 19 19 14 19 14
4 19 5 5 19 5 1
In [178]: df2.T.drop_duplicates().T
Out[178]:
Time H1 Time Relative
1 3 13 0
2 1 15 14
3 14 19 14
4 19 5 1
转置对于大数据帧来说效率很低。这里有一个替代方案:
def duplicate_columns(frame):
groups = frame.columns.to_series().groupby(frame.dtypes).groups
dups = []
for t, v in groups.items():
dcols = frame[v].to_dict(orient="list")
vs = dcols.values()
ks = dcols.keys()
lvs = len(vs)
for i in range(lvs):
for j in range(i+1,lvs):
if vs[i] == vs[j]:
dups.append(ks[i])
break
return dups
像这样使用它:
dups = duplicate_columns(frame)
frame = frame.drop(dups, axis=1)
Edit
一个内存高效的版本,像对待其他值一样对待nan:
from pandas.core.common import array_equivalent
def duplicate_columns(frame):
groups = frame.columns.to_series().groupby(frame.dtypes).groups
dups = []
for t, v in groups.items():
cs = frame[v].columns
vs = frame[v]
lcs = len(cs)
for i in range(lcs):
ia = vs.iloc[:,i].values
for j in range(i+1, lcs):
ja = vs.iloc[:,j].values
if array_equivalent(ia, ja):
dups.append(cs[i])
break
return dups
下面是一个基于重复列名删除列的单行解决方案:
df = df.loc[:,~df.columns.duplicated()].copy()
工作原理:
假设数据帧的列是['alpha','beta','alpha']
df.columns. replicated()返回一个布尔数组:每一列为True或False。如果它为False,则列名在此之前是唯一的,如果它为True,则列名在之前被复制。例如,使用给定的示例,返回值将是[False,False,True]。
Pandas允许使用布尔值进行索引,因此它只选择True值。因为我们想要保留未复制的列,我们需要翻转上面的布尔数组(即[True, True, False] = ~[False,False,True])
最后,df。loc[:,[True,True,False]]使用前面提到的索引功能只选择非重复的列。
最后的.copy()用于复制数据帧,以(主要)避免在稍后尝试修改现有数据帧时出错。
注意:上面只检查列的名称,而不是列的值。
删除重复索引
因为它足够相似,所以在索引上做同样的事情:
df = df.loc[~df.index.duplicated(),:].copy()
通过检查值而不换位来删除重复项
更新和警告:请小心应用此。根据评论中dr . what提供的反例,这种解决方案可能在所有情况下都没有理想的结果。
df = df.loc[:,~df.apply(lambda x: x.duplicated(),axis=1).all()].copy()
这避免了转位的问题。它快吗?不。这有用吗?是的。来,试试这个:
# create a large(ish) dataframe
ldf = pd.DataFrame(np.random.randint(0,100,size= (736334,1312)))
#to see size in gigs
#ldf.memory_usage().sum()/1e9 #it's about 3 gigs
# duplicate a column
ldf.loc[:,'dup'] = ldf.loc[:,101]
# take out duplicated columns by values
ldf = ldf.loc[:,~ldf.apply(lambda x: x.duplicated(),axis=1).all()].copy()
以防有人还在寻找如何在Python中为Pandas数据帧的列中寻找重复值的答案,我想出了这个解决方案:
def get_dup_columns(m):
'''
This will check every column in data frame
and verify if you have duplicated columns.
can help whenever you are cleaning big data sets of 50+ columns
and clean up a little bit for you
The result will be a list of tuples showing what columns are duplicates
for example
(column A, Column C)
That means that column A is duplicated with column C
more info go to https://wanatux.com
'''
headers_list = [x for x in m.columns]
duplicate_col2 = []
y = 0
while y <= len(headers_list)-1:
for x in range(1,len(headers_list)-1):
if m[headers_list[y]].equals(m[headers_list[x]]) == False:
continue
else:
duplicate_col2.append((headers_list[y],headers_list[x]))
headers_list.pop(0)
return duplicate_col2
你可以像这样强制转换定义:
duplicate_col = get_dup_columns(pd_excel)
它将显示如下结果:
[('column a', 'column k'),
('column a', 'column r'),
('column h', 'column m'),
('column k', 'column r')]
简单的列比较是按值检查重复列的最有效方法(就内存和时间而言)。这里有一个例子:
import numpy as np
import pandas as pd
from itertools import combinations as combi
df = pd.DataFrame(np.random.uniform(0,1, (100,4)), columns=['a','b','c','d'])
df['a'] = df['d'].copy() # column 'a' is equal to column 'd'
# to keep the first
dupli_cols = [cc[1] for cc in combi(df.columns, r=2) if (df[cc[0]] == df[cc[1]]).all()]
# to keep the last
dupli_cols = [cc[0] for cc in combi(df.columns, r=2) if (df[cc[0]] == df[cc[1]]).all()]
df = df.drop(columns=dupli_cols)